215 resultados para Nitrate concentration
Resumo:
In the present study, we observed the in vitro effect of aniracetam on membrane fluidity and free calcium concentrations (Ca(2+)i) of frontal cortical (FC) and hippocampal (HP) synaptosomes of aged mice and young mice treated with amyloid-beta protein (A
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating protein with board spectrum of biological activity. Toxicity of this compound differs in different cell lines and this study examined the cause of such difference. It is generally believed that TCS toxicity is mediated through intracellular ribosome inactivation. Therefore, TCS toxicity should be determined by the amount inside cells rather than outside. Three different cell types IC21, JAR and Vero cell lines were chosen with high, medium and low sensitivity to TCS. Intracellular concentrations of fluorescein isothiocyanate labeled TCS were determined by laser scanning confocal microscopy. A good relationship was demonstrated between intracellular TCS concentration and toxicity. Highest intracellular concentration was found in IC21, followed by JAR, and lowest in Vero cells. When the intracellular TCS concentrations in these cells were reduced by using a competitive inhibitor to block cell entry, cytotoxicity was not observed. In conclusion, there is strong evidence to indicate that cytotoxicity of TCS is dependent on its intracellular concentration. Variation of cytotoxicity in different cells may be related to the mechanisms affecting its internalization. (C) 2002 Published by Elsevier Science Ireland Ltd.
Resumo:
Aim: To study the pharmacokinetics of sifuvirtide, a novel anti-human immunodeficiency virus (HIV) peptide, in monkeys and to compare the inhibitory concentrations of sifuvirtide and enfuvirtide on HIV-1-infected-cell fusion. Methods: Monkeys received 1.2 mg/kg iv or sc of sifuvirtide. An on-line solid-phase extraction procedure combined with liquid chromatography tandem mass spectrometry (SPELC/MS/MS) was established and applied to determine the concentration of sifuvirtide in monkey plasma. A four-I-127 iodinated peptide was used as an internal standard. Fifty percent inhibitory concentration (IC50) of sifuvirtide on cell fusion was determined by co-cultivation assay. Results: The assay was validated with good precision and accuracy. The calibration curve for sifuvirtide in plasma was linear over a range of 4.88-5000 mu g/L, with correlation coefficients above 0.9923. After iv or sc administration, the observed peak concentrations of sifuvirtide were 10626 +/- 2886 mu g/L and 528 +/- 191 mu g/L, and the terminal elimination half-lives (T,12) were 6.3 +/- 0.9 h and 5.5 +/- 1.0 h, respectively. After sc, T-max was 0.25-2 h, and the absolute bioavailability was 49% +/- 13%. Sifuvirtide inhibited the syncytium formation between HIV-1 chronically infected cells and uninfected cells with an IC50 of 0.33 mu g/L. Conclusion: An on-line SPE-LC/MS/MS approach was established for peptide pharmacokinetic studies. Sifuvirtide was rapidly absorbed subcutaneously into the blood circulation. The T-1/2 of sifuvirtide was remarkably longer than that of its analog, enfuvirtide, reported in healthy monkeys and it conferred a long-term plasma concentration level which was higher than its IC50 in vitro.
Resumo:
By impairing both function and survival, the severe reduction in oxygen availability associated with high-altitude environments is likely to act as an agent of natural selection. We used genomic and candidate gene approaches to search for evidence of such genetic selection. First, a genome-wide allelic differentiation scan (GWADS) comparing indigenous highlanders of the Tibetan Plateau (3,200 3,500 m) with closely related lowland Han revealed a genome-wide significant divergence across eight SNPs located near EPAS1. This gene encodes the transcription factor HIF2 alpha, which stimulates production of red blood cells and thus increases the concentration of hemoglobin in blood. Second, in a separate cohort of Tibetans residing at 4,200 m, we identified 31 EPAS1 SNPs in high linkage disequilibrium that correlated significantly with hemoglobin concentration. The sex-adjusted hemoglobin concentration was, on average, 0.8 g/dL lower in the major allele homozygotes compared with the heterozygotes. These findings were replicated in a third cohort of Tibetans residing at 4,300 m. The alleles associating with lower hemoglobin concentrations were correlated with the signal from the GWADS study and were observed at greatly elevated frequencies in the Tibetan cohorts compared with the Han. High hemoglobin concentrations are a cardinal feature of chronic mountain sickness offering one plausible mechanism for selection. Alternatively, as EPAS1 is pleiotropic in its effects, selection may have operated on some other aspect of the phenotype. Whichever of these explanations is correct, the evidence for genetic selection at the EPAS1 locus from the GWADS study is supported by the replicated studies associating function with the allelic variants.
Resumo:
Using directional freezing, Our objective was to cryopreserve rabbit semen and achieve fertility that was equal or higher than that achieved with conventional freezing. The working hypothesis was that controlling the ice-front propagation would allow redu
Resumo:
To determine the environmental factors influencing C, phytoplankton chlorophyll a (Ch1 a), field investigations 4 were conducted in three river-connected lakes (Dongting Lake, Poyang Lake and Shijiu Lake) of the Yangtze floodplain in 2004. Results showed that the average Chi a concentration in these lakes ranged from 2.98 to 3.65 mg m(-3). The major factors influencing Chl a in lentic and lotic regions were total phosphorus (TP) and water velocity (U), respectively. Multiple relationships including total nitrogen (log(10)TN) and water depth (log(10)Z) were established. Further analyses found that the absolute Chi a and slope of log(10)Chl a=f (log(10)TP) in the river-connected lakes were obviously lower than those in the river-isolated lakes. This suggests the river-lake connectivity can significantly modify relationship between TP and chlorophyll a concentration.
Resumo:
A recurrent artificial neural network was used for 0-and 7-days-ahead forecasting of daily spring phytoplankton bloom dynamics in Xiangxi Bay of Three-Gorges Reservoir with meteorological, hydrological, and limnological parameters as input variables. Daily data from the depth of 0.5 m was used to train the model, and data from the depth of 2.0 m was used to validate the calibrated model. The trained model achieved reasonable accuracy in predicting the daily dynamics of chlorophyll a both in 0-and 7-days-ahead forecasting. In 0-day-ahead forecasting, the R-2 values of observed and predicted data were 0.85 for training and 0.89 for validating. In 7-days-ahead forecasting, the R-2 values of training and validating were 0.68 and 0.66, respectively. Sensitivity analysis indicated that most ecological relationships between chlorophyll a and input environmental variables in 0-and 7-days-ahead models were reasonable. In the 0-day model, Secchi depth, water temperature, and dissolved silicate were the most important factors influencing the daily dynamics of chlorophyll a. And in 7-days-ahead predicting model, chlorophyll a was sensitive to most environmental variables except water level, DO, and NH3N.
Resumo:
P>An 83-day growth trial was conducted using a flow-through system to examine the effects of different dietary iron levels on growth and hepatic iron concentration in juvenile gibel carp (Carassius auratus gibelio). Six purified diets supplemented with different levels of iron (0, 10, 30, 60, 100 and 200 mg kg(-1)) (as ferrous sulfate) were fed to triplicate groups of fish (initial weight 2.12 +/- 0.00 g per fish). The results showed that the addition of iron to the basal diet did not significantly affect the specific growth rate (SGR), feed efficiency (FE), survival, red blood cell amount (RBC), hemoglobin content (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) or mean corpuscular hemoglobin concentration (MCHC). Hepatic iron concentration and hematocrit (Hct) were significantly influenced by dietary iron level (P < 0.05). On the basis of the iron concentration for the maintenance of optimum hepatic iron concentration and Hct, it was concluded that the dietary iron concentration of juvenile gibel carp should be not less than 202 mg Fe kg(-1) diet.
Resumo:
Nutrient-rich effluents caused rising concern due to eutrophication of aquatic environment by utilization of a large amount of formula feed. Nutrient removal and water quality were investigated by planting aquatic vegetable on artificial beds in 36-m(2) concrete fishponds. After treatment of 120 days, 30.6% of total nitrogen (TN) and 18.2% of total phosphorus (TP) were removed from the total input nutrients by 6-m(2) aquatic vegetable Ipomoea aquatica. The concentrations of TN, TP, chemical oxygen demand (COD) and chlorophyll a in planted ponds were significantly lower than those in non-planted ponds (P<0.05). Transparency of water in planted ponds was much higher than that of control ponds. No significant differences in the concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO3-N) and nitrite nitrogen (NO2--N) were found between planted and non-planted ponds. These results suggested that planting aquatic vegetable with one-sixth covered area of the fishponds could efficiently remove nutrient and improve water quality.
Resumo:
The influence of bicarbonate (HCO3-) on Microcystis aeruginosa FACHB 905 was assessed in this study. Growth curves, chlorophyll a fluorescence and ultrastructure were measured at two HCO3- concentrations, 2.3 mM and 12.4 mM. A treatment of sodium chloride (NaCl) was also conducted alongside to establish the influence level of sodium. It was found that upon treatment with elevated HCO3- concentrations of 2.3 mM and 12.4 mM, cell densities were 13% and 27% (respectively) higher than controls. In photosynthetic performance, elevated HCO3- concentration initially stimulated Fv/Fm at the prophase of culture and then subsequently inhibited it. The inhibition of 2.3mM was higher than that of 12.4mM HCO3-. The maximum relative electron transport rate (ETRmax) exhibited inhibition at elevated HCO3- concentrations. DI0/CS was decreased at 2.3 mM and increased at 12.4mM. In the case of both treatments. ABS/CSI TR0/CS, ET0/CS, RC/CS0 and RC/CSm were decreased by elevated HCO3- concentrations, which indicated damage to photosynthetic apparati and an inactivation of a fraction of reaction centers. This point was also proven by ultrastructural photos. High HCO3--exposed cells lost the characteristic photosynthetic membrane arrangement compared with the control and high salinity treated samples. At the 2.3mM concentration of HCO3-. damage to photosynthetic apparati caused decreased photosynthetic activity. These findings suggested that elevated HCO3- concentration stimulated the growth and photosynthesis of M. aeruginosa FACHB 905 in a short time. Exposure to high HCO3- concentrations for a longer period of time will damage photosynthetic apparatus. In addition, the ultrastructure indicated that elevated HCO3--concentration lead to photosynthetic apparati damage. In our experiment, it was observed that the inhibition effect of 2.3mM HCO3- was higher than that of 12.4mM HCO3-. We hypothesized that M. aeruginosa FACHB 905 induced a protective mechanism under high concentrations of HCO3-.
Resumo:
The submersed macrophyte, Vallisneria natans L., was cultured in laboratory with NH (4) (+) -enriched tap water (1 mg L-1 NH4-N) for 2 months and the stressful effects of high ammonium (NH (4) (+) ) concentrations in the water column on this species was evaluated. The plant growth was severely inhibited by the NH (4) (+) supplement in the water column. The plant carbon and nitrogen metabolisms were disturbed by the NH (4) (+) supplement as indicated by the accumulation of free amino acids and the depletion of soluble carbohydrates in the plant tissues. The results suggested that high NH (4) (+) concentrations in the water column may hamper the restoration of submersed vegetation in eutrophic lakes.
Resumo:
The concentrations of major anions and cations, nitrogen and phosphorus, dissolved and particulate trace elements, and organic pollutants were determined for the middle and lower reaches of the Yangtze River (Changjiang) from below the Three Gorges Dam (TGD) to the mouth at Shanghai in November 2006. The concentration of dissolved inorganic phosphate (DIP) was constant at a low level of 6-8 mu gP/L, but the concentration of nitrate (NO3-) approximately doubled downstream and was closely correlated with K+. This translated to a daily load of well over 1000 It of dissolved inorganic nitrogen (DIN) at Datong. The average concentrations of dissolved Pb (0.078 +/- 0.023 mu g/L), Cd (0.024 +/- 0.009 mu g/L), Cr(0.57 +/- 0.09 mu g/L), Cu (1.9 +/- 0.7 mu g/L), and Ni (0.50 +/- 0.49 mu g/L) were comparable with those in other major world rivers, while As (3.3 +/- 1.3 mu g/L) and Zn (1.5 +/- 0.6 mu g/L) were higher by factors of 5.5 and 2.5, respectively. The trace element contents of suspended particles of As (31 +/- 28 mu g/g), Pb (83 +/- 34 mu g/g), and Ni (52 +/- 16 mu g/g) were close to maximum concentrations recommended for rivers by the European Community (EC). The average concentrations of Cd (2.6 +/- 1.6 mu g/g), Cr (185 +/- 102 mu g/g), Cu (115 +/- 106 mu g/g), and Zn (500 +/- 300 mu g/g) exceeded the EC standards by a factor of two, and Hg (4.4 +/- 4.7 mu g/g) by a factor of 4 to 5. Locally occurring peak concentrations exceed these values up to fourfold, among them the notorious elements As, Hg, and Tl. All dissolved and particulate trace element concentrations were higher than estimates made twenty years ago [Zhang, J., Geochemistry of trace metals from Chinese river/estuary systems: an overview. Estuar Coast Shelf Sci 1995; 41: 631-658.]. The enormous loads of anthropogenic pollutants disposed to the river were diluted by the large water discharge of the Yangtze even during the lowest flow resulting in the relatively low concentration levels of trace elements and organic pollutants observed. We estimated loads of e.g. As, Pb and Ni to the East China Sea to be about 4600 kg As d(-1), 3000 kg Pb d(-1), and 2000 kg Ni d(-1). About 6000 t d(-1) of dissolved organic carbon (DOC) was delivered into the sea at the time of our cruise. We tested for 236 organic pollutants, and only the most infamous were found to be barely above detection limits. We estimated that the load of chlorinated compounds, aromatic hydrocarbons, phenols, and PAHs were between 500 and 3500 kg d(-1). We also detected eight herbicides entering the estuary with loads of 5-350 kg d(-1). The pollutant load, even when at low concentrations, are considerable and pose an increasing threat to the health of the East China Sea ecosystem. (c) 2008 Elsevier B.V. All rights reserved.