223 resultados para Nickel alloys.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of four nickel(II) and copper(II) hydrazone complexes, which will hopefully be used as recording layers for the next-generation of high-density recordable disks, were prepared by using the spin-coating method. Absorption spectra of the thin films on K9 optical glass substrates in the 300-700 nm wavelength region were measured. Optical constants (complex refractive indices N) and thickness d of the thin films prepared on single-crystal silicon substrates in the 275-675 nm wavelength region were investigated on a rotating analyzer-polarizer scanning ellipsometer by fitting the measured ellipsometric angles (Psi(lambda) and Delta(lambda)) with a 3-layer model (Si/dye film/air). The dielectric functions epsilon and absorption coefficients alpha as a function of the wavelength were then calculated. Additionally, a design to achieve high reflectivity and optimum dye film thickness with an appropriate reflective layer was performed with the Film Wizard software using a multilayered model (PC substrate/reflective layer/dye film/air) at 405 nm wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smooth thin films of three kinds of nickel(II)-azo complexes were prepared by the spin-coating method. Absorption spectra of the thin films on K9 glass substrate in the 300-600 nn wavelength region were measured. Optical constants (complex refractive index N = n + ik) and thickness of the thin films prepared on single-crystal silicon substrate in the 300-600 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constants epsilon (epsilon = epsilon(1) + i epsilon(2)), absorption coefficients a as well as reflectance R of thin films were then calculated at 405 nm. In addition, in order to examine the possible use of nickel(II)-azo complex thin film as an optical recording medium, one of the nickel(II)-azo complex thin film prepared on K9 glass substrate with an Ag reflective layer was also studied by atomic force microscopy and static optical recording. The results show that the nickel(II)-azo complex thin film is smooth and has a root mean square surface roughness of 2.25 nm, and the recording marks on the nickel(II)-azo complex thin film are very clear and circular, and their size can reach 200 nn or less. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-coated films of nickel 1,6,10,15,19,24,28,33-octa-iso-pentyloxy-2,3-naphthalocyanine complex were obtained and characterized by UV-vis absorption spectroscopy. A linear relationship between the absorbance and solution concentration was observed. Low concentration solutions could afford smooth and homogeneous film surfaces as indicated by atomic force microscopy. The film structure was studied by small angle X-ray diffraction. The films were used for NO2 sensing experiments. The results indicate that the elevation of sensing temperature can shorten the response time and increase recovery ratio and response magnitude of the sensing films. High NO2 concentration can also shorten response time. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new hydrazone chelating ligands, 2-(2-(5-methylisoxazol-3-yl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione (HL1) and 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-5,5-dimethylcyclohexane- 1,3-dione (HL2), and their nickel(II) and copper(II) complexes were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, H-1 NMR, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using spin-coating and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential thermogravimetry (DTG). Different thermodynamic and kinetic parameters namely activation energy (E

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lattice constants, elasticity, band structure and piezoelectricity of hexagonal wideband gap BexZn1-xO ternary alloys are calculatedusing firstprinciples methods. The alloys' lattice constants obey Vegard's law well. As Be concentration increases, the bulk modulus and Young's modulus of the alloys increase, whereas the piezoelectricity decreases. We predict that BexZn1-xO/GaN/substrate (x = 0.022) multilayer structure can be suitable for high-frequency surface acoustic wave device applications. Our calculated results are in good agreement with experimental data and other theoretical calculations. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mg-Ga acceptor energy levels in GaN and random Al8In4Ga20N32 quaternary alloys are calculated using the first-principles band-structure method. We show that due to wave function localization, the MgGa acceptor energy level in the alloy is significantly lower than that of GaN, although the two materials have nearly identical band gaps. Our study demonstrates that forming AlxInyGa1-x-yN quaternary alloys can be a useful approach to lower acceptor ionization energy in the nitrides and thus provides an approach to overcome the p-type doping difficulty in the nitride system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elastic constants, the bulk modulus, Young's modulus, band-gap bowing coefficients, spontaneous and piezoelectric polarizations, and piezoelectric coefficients of hexagonal AlxGa1-xN ternary alloys are calculated using first-principles methods. The fully relaxed structures and the structures subjected to homogeneous biaxial and uniaxial tension are investigated. We show that the biaxial tension in the plane perpendicular to the c axis and the uniaxial tension along the c axis all reduce the bulk modulus, whereas they reduce and enhance Young's modulus, respectively. We find that the biaxial and uniaxial tension can enhance the bowing coefficients. We also find that the biaxial tension can enhance the total polarization, while the uniaxial tension will suppress the total polarization. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlInGaN quaternary alloys were successfully grown on sapphire substrate by radio-frequency plasma-excited molecular beam epitaxy (RF-MBE). AlInGaN quaternary alloys with different compositions were acquired by changing the Al cell's temperature. The streaky RHEED patterns were observed during AlInGaN quaternary alloys growth. Scanning Electron Microscope (SEM), Rutherford back-scattering spectrometry (RBS), X-Ray diffraction (XRD) and Cathodoluminescence (CL) were used to characterize the structural and optical properties of the AlInGaN alloys. The experimental results show that the AlInGaN quaternary alloys grow on the GaN buffer in the layer-by-layer growth mode. When the Al cell's temperature is 920 degrees C, the Al/In ratio in the AlInGaN quaternary alloys is about 4.7, and the AlInGaN can acquire better crystal and optical quality. The X-ray and CL full-width at half-maximum (FWHM) of the AlInGaN are 5arcmin and 25nm, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The N-O acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the first-principles band-structure method, we investigate the p-type doping properties and band structural parameters of the random Ga1-xInxN1-yAsy quaternary alloys. We show that the Mg-Ga substitution is a better choice than ZnGa to realize the p-type doping because of the lower transition energy level and lower formation energy. The natural valence band alignment of GaAs and GaInNAs alloys is also calculated, and we find that the valence band maximum becomes higher with the increasing in composition. Therefore, we can tailor the band offset as desired which is helpful to confine the electrons effectively in optoelectronic devices. (C) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GaN-rich side of GaNP ternary alloys has been successfully synthesized by light-radiation heating and low-pressure metal-organic chemical vapor deposition. X-ray diffraction (XRD) rocking curves show that the ( 0002) peak of GaNP shifts to a smaller angle with increasing P content. From the GaNP photoluminescence (PL) spectra, the red shifts from the band-edge emission of GaN are determined to be 73, 78 and 100 meV, respectively, in the GaNP alloys with the P contents of 1.5%, 5.5% and 7.5%. No PL peak or XRD peak related to GaP is observed, indicating that phase separation induced by the short-range distribution of GaP-rich regions in the GaNP layer has been effectively suppressed. The phase-separation suppression in the GaNP layer is associated with the high growth rate and the quick cooling rate under the given growth conditions, which can efficiently restrain the accumulation of P atoms in the GaNP layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the results of the temperature-dependent photoluminescence (PL) measurements, the broad PL emission in the phase-separated GaNP alloys with P compositions of 0.03, 0.07, and 0.15 has investigated. The broad PL peaks at 2.18, 2.12 and 1.83 eV are assigned to be an emission from the optical transitions from several trap levels, possibly the iso-electronic trap levels related to nitrogen. With the increasing P composition (from 0.03 to 0.15), these iso-electronic trap levels are shown to become resonant with the conduction band of the alloy and thus optically inactive, leading to the apparent red shift (80-160meV) of the PL peak energy and the trend of the red shift is strengthened. No PL emission peak is observed from the GaN-rich GaNP region, suggesting that the photogenerated carriers in the GaN-rich GaNP region may recombine with each other via non-radiation transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the first-principles band-structure method and the special quasirandom structures approach, the authors have investigated the band structure of random AlxInyGa1-x-yN quaternary alloys. They show that the wave functions of the band edge states are more localized on the InN sites. Consequently, the photoluminescence transition intensity in the alloy is higher than that in GaN. The valence band maximum state of the quaternary alloy is also higher than GaN with the same band gap, indicating that the alloy can be doped more easily as p-type. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-Al-content InxAlyGa1-x-yN (x = 1-10%, y = 34-45%) quaternary alloys were grown on sapphire by radio-frequency plasma-excited molecular beam epitaxy. Rutherford back-scattering spectrometry, high resolution x-ray diffraction and cathodoluminescence were used to characterize the InAlGaN alloys. The experimental results show that InAlGaN with an appropriate Al/In ratio (near 4.7, which is a lattice-match to the GaN under-layer) has better crystal and optical quality than the InAlGaN alloys whose Al/In ratios are far from 4.7. Some cracks and V-defects occur in high-Al/In-ratio InAlGaN alloys. In the CL image, the cracks and V-defect regions are the emission-enhanced regions.