71 resultados para Neuroblast lineages
Resumo:
Twenty strains of Microcystis Kutz were isolated from different freshwater bodies in China to analyze the diversity, geographical distribution and toxin profiles. Based on whole-cell polymerase chain reaction of cpcBA-IGS nucleotide sequence, the derived neighbor-joining (NJ) and maximum parsimony (MP) trees indicate that these strains of Microcystis can be divided into four clusters. The strains from south, middle and north region of China formed distinct lineages, suggesting high diversity and a geographical distribution from south to north locations. Moreover, the results being indicating high variable genotypes of the strains of the Microcystis strains from the same lake show that there is high diversity of Microcystis within a water bloom population. Comparing the results of the present study with those reported for compared with 43 strains of Microcystis from other locations, also reveals Chinese strains have high similarity with those from regions in the North Hemispherical. This suggests that the Microcystis strains in the world might have a geographical distribution. Analysis of 30 strains using the primers MCF/TER and TOX2P/TOX2M showed that there was no correlation between the gene of cpcBA-IGS and the presence of mcy. Toxic strains were founded to be predominant in different water bodies throughout China.
Resumo:
Aim: To test a vicariant speciation hypothesis derived from geological evidence of large-scale changes in drainage patterns in the late Miocene that affected the drainages in the south-eastern Tibetan Plateau. Location: The Tibetan Plateau and adjacent areas. Methods: The cytochrome b DNA sequences of 30 species of the genus Schizothorax from nine different river systems were analysed. These DNA sequences were analysed using parsimony, maximum likelihood and Bayesian methods. The approximately unbiased and Shimodaira-Hasegawa tests were applied to evaluate the statistical significance of the shortest trees relative to alternative hypotheses. Dates of divergences between lineages were estimated using the nonparametric rate smoothing method, and confidence intervals of dates were obtained by parametric bootstrapping. Results: The phylogenetic relationships recovered from molecular data were inconsistent with traditional taxonomy, but apparently reflected geographical associations with rivers. Within the genus Schizothorax, we observed a divergence between the lineages from the Irrawaddy-Lhuit and Tsangpo-Parlung rivers, and tentatively dated this vicariant event back to the late Miocene (7.3-6.8 Ma). We also observed approximately simultaneous geographical splits within drainages of the south-eastern Tibetan Plateau, the Irrawaddy, the Yangtze and the Mekong-Salween rivers in the late Miocene (7.1-6.2 Ma). Main conclusions: Our molecular evidence tentatively highlights the importance of palaeoriver connections and the uplift of the Tibetan Plateau in understanding the evolution of the genus Schizothorax. Molecular estimates of divergence times allowed us to date these vicariant scenarios back to the late Miocene, which agrees with geological suggestions for the separation of these drainages caused by tectonic uplift in south-eastern Tibet. Our results indicated the substantial role of vicariant-based speciation in shaping the current distribution pattern of the genus Schizothorax.
Resumo:
It is widely accepted that mitochondrial DNA (mtDNA) control region evolves faster than protein encoding genes with few exceptions. In the present study, we sequenced the mitochondrial cytochrome b gene (cyt b) and control region (CR) and compared their rates in 93 specimens representing 67 species of loaches and some related taxa in the Cobitoidea (Order Cypriniformes). The results showed that sequence divergences of the CR were broadly higher than those of the cyt b (about 1.83 times). However, in considering only closely related species, CR sequence evolution was slower than that of cyt b gene (ratio of CR/cyt b is 0.78), a pattern that is found to be very common in Cypriniformes. Combined data of the cyt b and CR were used to estimate the phylogenetic relationship of the Cobitoidea by maximum parsimony, neighbor-joining, and Bayesian methods. With Cyprinus carpio and Danio rerio as outgroups, three analyses identified the same four lineages representing four subfamilies of loaches, with Botiinae on the basal-most clade. The phylogenctic relationship of the Cobitoidea was ((Catostomidae + Gyrinocheilidae) + (Botiinae + (Balitorinae + (Cobitinae + Nemacheilinae)))), which indicated that Sawada's Cobitidae (including Cobitinae and Botiinae) was not monophyletic. Our molecular phylogenetic analyses are in very close agreement with the phylogenetic results based on the morphological data proposed by Nalbant and Bianco, wherein these four subfamilies were elevated to the family level as Botiidae, Balitoridae, Cobitidae, and Nemacheilidae. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
149 complete mitochondrial DNA (mtDNA) cytochrome b (Cyt b) genes (1140 bp) of Gymnocypris przewalskii, Gymnocypris eckloni and Gymnocyptis scolistomus from the Lake Qinghai, Yellow River and Qaidam Basin were sequenced and analyzed. Consistent dendrogram indicated that the samples collected from the same species do not constitute a separate monophyletic group and all the samples were grouped into three highly divergent lineages (A, B and C). Among them, Lineage A contained all samples of G. przewalskii from the Lake Qinghai and partial samples of the G. eckloni from the Yellow River. Lineage B contained the remaining samples of G. eckloni from the Yellow River. Lineage C was composed of a monophyletic group by G. eckloni from the Qaidam Basin. Analysis of molecular variance (AMOVA) indicated that most of genetic variations were detected within these three mtDNA lineages (93.12%), suggesting that there are three different lineages of Gymnocypris in this region. Our Cyt b sequence data showed that G. przewalskii was not a polytypic species, and G. scolistomus was neither an independent species nor a subspecies of G. eckloni. The divergent mtDNA lineages of G. eckloni from the Yellow River suggested that gene flow between the different populations was restricted to a certain extent by several gorges on the upper reach of the Yellow River. Lineage B of G. eckloni might be the genetic effect from the ancestor which was incorporated with the endemic schizothoracine fishes when the headward erosion of the Yellow River reached to its current headwaters of late. The G. eckloni from Basin Qaidam was a monophyletic group (lineage C) and F-st values within G. eckloni from the Yellow River were higher than 0.98, suggesting that the gene flow has been interrupted for a long time and the G. eckloni from Basin Qaidam might have been evolved into different species by ecology segregation. The correlation between the rakers number of Gymnocypris and population genetic variation was not significant. All Gymnocypris populations exhibited a low nucleotide diversity (pi = 0.00096-0.00485). Therefore the Gymnocyptis populations from Basin Qaidam could have experienced severe bottleneck effect in history. Our result suggested Gym-nocypris populations of Basin Qaidam should give a high priority in conservation programs.
Resumo:
Rhinogobio is a cyprinid genus restricted to the river drainages of China. Sequences of the mitochondrial DNA control region were determined for four Rhinogohio species and one outgroup species, Coreius heterodon, to investigate the phylogenetic relationships within the genus. The control region of the Rhinogobio species ranges from 922 to 930 base pairs and comprises 930 base pairs in Coreius. Our phylogenetic analysis indicates two distinct lineages in the genus Rhinogobio. The first includes only R. ventralis. In the second lineage there are three species, two closely related species R. cylindricus and R. hunanensis, and their sister species R. typus. An analysis of character adaptations suggests an evolutionary trend in this genus towards a relatively lower body and caudal peduncle depth, a shorter dorsal fin, and a more anterior anus. In addition, there is a trend towards shorter barbels and relatively larger eyes. Some or all of these traits may be associated with a habitat shift from fast-flowing turbid rivers to slower-flowing clear river habitats.
Resumo:
To clarify cuttlefish phylogeny, mitochondrial cytochrome c oxidase subunit 1 (COI) gene and partial 16S rRNA gene are sequenced for 13 cephalopod species. Phylogenetic trees are constructed, with the neighbor-joining method. Coleoids are divided into two main lineages, Decabrachia and Octobrachia. The monophyly of the order Sepioidea, which includes the families Sepiidae, Sepiolidae and Idiosepiidae, is not supported. From the two families of Sepioidea examined, the Sepiolidae are polyphyletic and are excluded from the order. On the basis of 16S rRNA and amino acid of COI gene sequences data, the two genera (Sepiella and Sepia) from the Sepiidae can be distinguished, but do not have a visible boundary using COI gene sequences. The reason is explained. This suggests that the 16S rDNA of cephalopods is a precious tool to analyze taxonomic relationships at the genus level, and COI gene is fitter at a higher taxonomic level (i.e., family).
Resumo:
Partial sequences of mitochondrial 16S rRNA gene were obtained by PCR amplification for comparisons among nine species of glyptosternoid fishes and six species of non-glyptosternoids representing 10 sisorid genera. There are compositional biases in the A-rich impaired regions and G-rich paired regions. A-G transitions are primarily responsible for the Ts/Tv bias in impaired regions. The overall substitution rate in impaired regions is almost two times higher than that in the paired regions. Saturation plots at comparable levels of sequence divergence demonstrate no saturation effects. Phylogenetic analyses using both maximum likelihood and Bayesian methods support the monophyly of Sisoridae. Chinese sisorid catfishes are composed of two major lineages, one represented by (Gagata (Bagarius, Glyptothorax)) and the other by "glyptosternoids + Pseudecheneis". The glyptosternoids may not be a monophyletic group. A previous hypothesis referring to Pseudecheneis as the sister group of monophyletic glyptosternoids, based on morphological evidence, is not supported by the molecular data. Pseudecheneis is shown to be a sister taxon of Glaridoglanis. Pareuchiloglanis might be paraphyletic with Pseudexostoma and Euchiloglanis. Our results also support the hypothesis that Pareuchiloglanis anteanalis might be considered as the synonyms of Pareuchiloglanis sinensis, and genus Euchiloglanis might have only one valid species, Euchiloglanis davidi.
Resumo:
With 210 genera and 2010 species, Cyprinidae is the largest freshwater fish family in the world. Several papers, based on morphological and molecular data, have been published and have led to some solid conclusions, such as the close relationships between North American phoxinins and European leuciscins. However, the relationships among major subgroups of this family are still not well resolved, especially for those East Asian groups. In the present paper, the mitochondrial DNA (mtDNA) control region, 896-956 base pairs, of 17 representative species of East Asian cyprinids was sequenced and compared with those of 21 other cyprinids to study their phylogenetic relationships. After alignment, there were 1051 sites. The comparison between pairwise substitutions and HKY distances showed that the mtDNA control region was suitable for phylogenetic study. Phylogenetic analysis indicated that there are two principal lineages in Cyprinidae: Cyprinine and Leuciscine. In Cyprinine, the relationships could be a basal Labeoinae, an intermediate Cyprininae, and a diversified Barbinae (including Schizothroaxinae). In Leuciscine, Rasborinae is at the basal position; Gobioninae and Leuciscinae are sister groups; the East Asian cultrin-xenocyprinin taxa form a large monophyletic group with some small affiliated groups; and the positions of Acheilognathinae and Tincinae are still uncertain.
Resumo:
We surveyed mitochondrial DNA (mtDNA) sequence variation in the subfamily Xenocyprinae from China and used these data to estimate intraspecific, interspecific, and intergeneric phylogeny and assess biogeographic scenarios underlying the geographic structure of lineages. We sequenced 1140 bp of cytochrome b from 30 individuals of Xenocyprinae and one putative outgroup (Myxocypris asiaticus) and also sequenced 297 bp of ND4L, 1380 bp of ND4, 68 bp of tRNA(His), and 69 bp of tRNA(Ser) from 17 individuals of Xenocyprinae and the outgroup (M. asiaticus). We detected high levels of nucleotide variation among populations, species, and genera. The phylogenetic analysis suggested that Distoechodon hupeinensis might be transferred to the genus Xenocypris, the taxonomic status of the genus Plagiognathops might be preserved, and species of Xenocypris and Plagiognathops form a monophyletic group that is sister to the genus Distoechodon and Pseudobrama. The introgressive hybridization might occur among the populations of X. argentea and X. davidi, causing the two species to not be separated by mtDNA patterns according to their species identification, and the process and direction of hybridization are discussed. The spatial distributions of mtDNA lineages among populations of Xenocypris were compatible with the major geographic region, which indicated that the relationship between Hubei + Hunan and Fujian is closer than that between Hubei + Hunan and Sichuan, From a perspective of parasite investigation, our data suggested that the fauna of Hexamita in Xenocyprinae could be used to infer the phylogeny of their hosts. (C) 2001 Academic Press.
Resumo:
Because of the shortage of phycoerythrin (PE) gene sequences from rhodophytes, peBA encoding beta- and alpha-subunits of PE from three species of red algae (Ceramium boydenn, Halymenia sinensis, and Plocamium telfariae) were cloned and sequenced. Different selection forces have affected the evolution of PE lineages. 8.9 % of the codons were subject to positive selection within the PE lineages (excluding high-irradiance adapted Prochlorococcus). More than 40 % of the sites may be under positive selection, and nearly 20 % sites are weakly constraint sites in high-irradiance adapted Prochlorococcus. Sites most likely undergoing positive selection were found in the chromophore binding domains, suggesting that these sites have played important roles in environmental adaptation during PE diversification. Moreover, the heterogeneous distribution of positively selected sites along the PE gene was revealed from the comparison of low-irradiance adapted Prochlorococcus and marine Synechococcus, which firmly suggests that evolutionary patterns of PEs in these two lineages are significantly different.
Resumo:
A molecular phylogeny is presented for the subfamily Dorippinae (including 9 individuals, representing 5 species and 4 genera), based on the sequence data from 16S rRNA gene. Two-cluster test between lineages in these phylogenetic trees has been performed. On the basis of rate constancy, the rate of nucleotide substitutions of 16S rDNA sequence data is estimated as 0.27% per million years. The analysis strongly supports the recognition of the Dorippinae as a monophyletic subfamily. Phylogenetic tree indicates that the subfamily Dorippinae is divided into two main clades, and genus Dorippe appears basal in the subfamily, diverging from other species 36.6 Ma ago. It is also clear that the Heikea is closely related to the genus Neodorippe. The divergence time between them is 15.8 Ma.
Resumo:
Galloanserae is an ancient and diverse avian group, for which comprehensive molecular evidence relevant to phylogenetic analysis in the context of molecular chronology is lacking. In this study, we present two additional mitochondrial genome sequences of Galloanserae (the whistling duck, Dendrocygna javanica, and the black swan, Cygnus atratus) to broaden the scope of molecular phylogenetic reconstruction. The lengths of the whistling duck's and black swan's mitochondrial genomes are 16,753 and 16,748 bases, respectively. Phylogenetic analyses suggest that Dendrocygna is more likely to be in a basal position of the branch consisting of Anatinae and Anserinae, an affiliation that does not conform to its traditional classification. Bayesian approaches were employed to provide a rough timescale for Galloanserae evolution. In general, a narrow range of 95% confidence intervals gave younger estimates than those based on limited genes and estimated that at least two lineages originated before the Coniacian epoch around 90 MYA, well before the Cretaceous-Tertiary boundary. In addition, these results, which were compatible with estimates from fossil evidence, also imply that the origin of numerous genera in Anseriformes took place in the late Oligocene to early Miocene. Taken together, the results presented here provide a working framework for future research on Galloanserae evolution, and they underline the utility of whole mitochondrial genome sequences for the resolution of deep divergence.
Resumo:
Phycobiliproteins, together with linker polypeptides and various chromophores, are basic building blocks of phycobilisomes, a supramolecular complex with a light-harvesting function in cyanobacteria and red algae. Previous studies suggest that the different types of phycobiliproteins and the linker polypeptides originated from the same ancestor. Here we retrieve the phycobilisome-related genes from the well-annotated and even unfinished cyanobacteria genomes and find that many sites with elevated d(N)/d(S) ratios in different phycobiliprotein lineages are located in the chromophore-binding domain and the helical hairpin domains (X and Y). Covariation analyses also reveal that these sites are significantly correlated, showing strong evidence of the functional-structural importance of interactions among these residues. The potential selective pressure driving the diversification of phycobiliproteins may be related to the phycobiliprotein-chromophore microenvironment formation and the subunits interaction. Sites and genes identified here would provide targets for further research on the structural-functional role of these residues and energy transfer through the chromophores.
Resumo:
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the alpha-, gamma- and delta-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13A degrees N.