71 resultados para Neuro-astroglial interaction model
Resumo:
We explore production mechanism and final state interaction in the pp -> nK(+)Sigma(+) channel based on the inconsistent experimental data published respectively by COSY-11 and COSY-ANKE. The scattering parameter a > 0 for n Sigma(+) interaction is favoured by large near-threshold cross section within a nonrelativistic parametrization investigation, and a strong n Sigma(+) interaction comparable to pp interaction is also indicated. Based on this analysis we calculate the contribution from resonance Delta*(1920) through pi(+) exchange within resonance model, and the numerical result suggests a rather small near-threshold total cross section, which is consistent with the COSY-ANKE data. With an additional sub-threshold resonance Delta*(1620), the model gives a much better description to the rather large near-threshold total cross section published by COSY-11
Resumo:
We improve the isospin dependent quantum molecular dynamical model by including isospin effects in the Skyrme potential and the momentum dependent interaction to obtain an isospin dependent Skyrme potential and an isospin dependent momentum interaction. We investigate the isospin effects of Skyrme potential and momentum dependent interaction on the isospin fractionation ratio and the dynamical mechanism in intermediate energy heavy ion collisions. It is found that the isospin dependent Skyrme potential and the isospin dependent momentum interaction produce some important isospin effects in the isospin fractionation ratio
Resumo:
Influences of the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependant interaction (MDI) on the isotope scaling are investigated by using the isospin-dependent quantum molecular dynamics model (IQMD). The results show that both the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependent interaction affect the isoscaling parameters appreciably and independently. The influence caused by the isospin dependence of two-body collision is relatively larger than that from the MDI in the mean field. Aiming at exploring the implication of isoscaling behaviour, which the statistical equilibrium in the reaction is reached, the statistical properties in the mass distribution and the kinetic energy distribution of the fragments simulated by IQMD are presented.
Resumo:
The influences of the isospin dependent in-medium nucleon-nucleon cross section and the MomentumDependent Interaction(MDI) on the isotope scaling have been investigated within the Isospin dependent Quantum Molecular Dynamics Model(IQMD). The results show that both the isospin dependent in-medium nucleon-nucleon cross section and the momentum interaction reduce the isoscaling parameter a appreciably, which means they decrease the dependence of yield ratios of two systems on the isospin difference between two systems.
Resumo:
We give a general SU(2)(L) x SU(2)(R) x U(1)(EM) sigma model with external sources, dynamical breaking and spontaneous vacuum symmetry breaking, and present the general formulation of the model. It is found that sigma and pi(0) without electric charges have electromagnetic interaction effects coming front the internal structures. A general Lorentz transformation relative to external sources J(gauge) - (J(A mu) J(A mu)(kappa)) derived, using the general Lorentz transformation and the four-dimensional current of nuclear matter of the ground si ate with J(gauge) = 0, we give the four-dimensional general relations between the different currents of nuclear matter systems with J(gauge) not equal 0 and those with J(gauge) = 0. The relation of the density's coupling with external magnetic field is derived, which conforms well to dense nuclear matter in a strong magnetic field. We show different condensed effects in strong interaction about fermions and antifermions, and give the concrete scalar and pseudoscalar condensed expressions of sigma(0) and pi(0) bosons. About different dynamical breaking and spontaneous vacuum symmetry breaking, the concrete expressions of different mass spectra are obtained in field theory. This paper acquires the running spontaneous vacuum breaking value sigma'(0), and obtains the spontaneous vacuum breaking in tenus of the running sigma'(0), which make nucleon, sigma, and pi particles gain effective masses. We achieve both the effect of external sources and nonvanishing value of the condensed scalar and pseudoscalar paticles. It is deduced that the masses of nucleons, sigma and pi generally depend on different external sources.
Resumo:
The alpha decay half-lives of the recently produced isotopes of the 112, 114, 116 and 118 nuclei and decay products have been calculated in the quasi-molecular shape path using the experimental Q(alpha) value and a Generalized Liquid Drop Model including the proximity effects between nucleons in the neck or the gap between the nascent fragments. Reasonable estimates are obtained for the observed alpha decay half-lives. The results are compared with calculations using the Density-Dependent M3Y effective interaction and the Viola-Seaborg-Sobiczewski formulae. Generalized Liquid Drop Model predictions are provided for the alpha decay half-lives of other superheavy nuclei using the Finite Range Droplet Model Q(alpha) and compared with the values derived from the VSS formulae.
Resumo:
An isospin-dependent quantum molecular dynamical model (IQMD) is developed, with the isospin degree of freedom in the momentum-dependent interaction(MDI) included in IQMD, to obtain an isospin- and momentum-dependent interaction (IMDI) in IQMD. We investigate the effect of IMDI on the isospin fractionation ratio and its dynamical mechanism in the intermediate energy heavy ion collisions. It is found that the IMDI induces the significant reductions in the isospin fractionation ratio for all of beam energies, impact parameters, neutron-proton ratios and mass number of colliding systems. However, the strong dependence of isospin fractionation ratio on the symmetrical potential is preserved, with the isospin degree of freedom included in the MDI, i.e. the isospin fractionation ratio is still a good probe for extracting the information about the equation of state of isospin asymmetrical nuclear matter.
Resumo:
The electron emission induced by highly charged ions Pb-207(q+) (24 <= q <= 36) interacting with Si(110) surface is reported. The result shows that the electron emission yield Y has a strong dependence on the projectile charge state q, incidence angle psi and impact energy E. In fitting the experimental data we found a nearly 1/tan psi dependence of Y. Theoretical analysis shows that these processes are closely related to the process of potential electron emission based on the classical over-the-barrier model.
Resumo:
An isospin degree of freedom is inserted into the momentum dependent interaction in the quantum molecular dynamics model to obtain an isospin dependent momentum interaction given in a form practically usable in isospin dependent quantum molecular dynamics model. We investigate the entrance channel effects for the role of isospin momentum dependent interaction on the isospin fractionation ratio and its dynamical mechanism in the intermediate energy heavy ion collisions. It is found that the isospin dependent momentum interaction induces a significant reduction of isospin fractionation ratio under all entrance channel conditions. However the strong dependence of isospin fractionation ratio on the symmetry potential is preserved after considering the isospin degree of freedom in the momentum dependent interaction.
Resumo:
In this work, we systematically study the interaction of D* and nucleon, which is stimulated by the observation of Lambda(c)(2940)(+) close to the threshold of D* p. Our numerical result obtained by the dynamical investigation indicates the existence of the D* N systems with J(P) = 1/2(+/-), 3/2(+/-), which not only provides valuable information to understand the underlying structure of Lambda(c)(2940)(+) but also improves our knowledge of the interaction of D* and nucleon. Additionally, the bottom partners of the D* N systems are predicted, which might be as one of the tasks in LHCb experiment.
Resumo:
Charmed baryon spectroscopy has been studied under a string model. In this model, charmed baryons are composed of a diquark and a charm quark which are connected by a constant tension. In this diquark picture, the quantum numbers J(P) of confirmed baryons have been well assigned. Energies of the first and second orbital excitations have been predicted and compared with the experimental data. Meanwhile, diquark masses have been extracted in the background of charm quark which satisfy a splitting relation based on spin-spin interaction.
Resumo:
A theoretical model of collisional quantum interference (CQI) is developed in a diatom-diatom system based on the first-order Born approximation of time-dependent perturbation theory and the multipolar interaction potential. The transition cross section is obtained. The relations between the differential and integral interference angles are discussed. The key factors on the determination of the differential and integral interference angles are obtained. The changing tendency of the interference angles with the experimental temperatures is obtained.
Resumo:
The spectroscopic and transmission electron microscopy (TEM) studies of interaction between chlorpromazine (CPZ) and dimyristoyl phosphatidylglycerol (DMPG) bilayer by using gold nanoparticles (AuN-Ps) as probes are reported. The DMPG bilayer-protected AuNPs were prepared by a simple one-step method. The DMPG bilayer tethered on the AuNPs was considered as a biomembrane model. The addition of CPZ affected the surface plasmon resonance (SPR) and morphology of the prepared AuNPs, and this effect was monitored by UV-vis spectroscopy and TEM.
Resumo:
Previous studies show that aromatic diols inhibited Ru(bpy)(3)(2+) electrochemiluminescence (ECL), and all reported Ru(bpy)(3)(2+) ECL methods for the determination of aromatic diols-containing coreactants are based on inhibition of Ru(bpy)(3)(2+)/tripropylamine ECL. In this study, the interaction between diol and borate anion was exploited for Ru(bpy)(3)(2+) ECL detection of coreactants containing aromatic diol group using epinephrine as a model analyte. The interaction prevented from the inhibition of Ru(bpy)(3)(2+) ECL by aromatic diol group of epinephrine. As a result, epinephrine was successfully detected in the absence of tripropylamine simply by using borate buffer solution as the supporting electrolyte. Under the optimum conditions, the log of the ECL intensity increases linearly with the log of epinephrine concentrations over the concentration range of 1.0x10(-9)-1.0x10(-4) M. The detection limit is 5.0x10(-10) M at a signal-to-noise ratio of three. The proposed method exhibit wider dynamic range and better detection limit than that by inhibited Ru(bpy)(3)(2+) ECL method. The relative standard deviation for 14 consecutive determinations of 5 mu M epinephrine was 3.5%. The strategy by interaction with borate anion or boronate derivatives is promising for the determination of coreactants containing aromatic diol group or aromatic hydroxyl acid group. Such interaction can also be used to avoid interference from aromatic diols or aromatic hydroxyl acids.
Resumo:
The interaction of daunomycin with sodium dodecyl sulfate and Triton X-100 micelles was investigated as a model for the hydrophobic contribution to the free energy of DNA intercalation reactions. Measurements of visible absorbance, fluorescence lifetime, steady-state fluorescence emission intensity, and fluorescence anisotropy indicate that the anthraquinone ring partitions into the hydrophobic micelle interior. Fluorescence quenching experiments using both steady-state and lifetime measurements demonstrate reduced accessibility of daunomycin in sodium dodecyl sulfate micelles to the anionic quencher iodide and to the neutral quencher acrylamide. Quenching of daunomycin fluorescence by iodide in Triton X-100 micelles was similar to that seen with free daunomycin. Studies of the energetics of the interaction of daunomycin with micelles by fluorescence and absorbance titration methods and by isothermal titration calorimetry in the presence of excess micelles revealed that association with sodium dodecyl sulfate and Triton X-100 micelles is driven by a large negative enthalpy. Association of the drug with both types of micelles also has a favorable entropic contribution, which is larger in magnitude for Triton X-100 micelles than for sodium dodecyl sulfate micelles.