391 resultados para Nd : YVO4
Resumo:
We report a diode end-pumped continuous wave (CW) passively mode-locked Nd:YVO4 laser with a homemade semiconductor saturable absorber mirror (SESAM). The maximum average output power is 5.3 W at the incident pump power of 17 W, which corresponds to an optical-optical conversion efficiency of 31.2% and slope efficiency of 34.7%. The corresponding optical spectrum has a 0.2-nm full width at half maximum (FWHM), and the pulse repetition rate is 83 MHz.
Resumo:
Two semiconductor saturable absorber mirrors (SESAMs), of which one is coated with 50% reflection film on the top and the other is not, were contrastively studied in passively mode-locked solid-state lasers which were pumped by low output power laser diode (LD). Experiments have shown that reducing the modulation depth of SESAM by coating partial reflection film, whose reflectivity is higher than that between SESAM and air interface, is an effective method to get continuous wave (CW) mode-locking instead of Q-switched mode-locking (QML) in low power pumped solid-state lasers. A simple Nd:YVO4 laser pumped by low power LD, in which no water-cooling system was used, could obtain CW mode-locking by the 50% reflector coated SESAM with average output power of ~ 20 mW
Resumo:
报道了利用声光振幅调制锁模的方法,在激光二极管端面抽运Nd:YVO4激光器上获得320MHz高重复频率脉冲列的实验结果。实验采用平一平腔结构,腔长452mm,耦合输出镜透过率为3.6%。所用声光介质为熔融石英晶体,以铌酸锂作换能器,在驱动功率4.5W时,对1064nm波长衍射效率为50,相应的调制深度为0.31。在最佳锁模状态下,激光二极管抽运功率为3.5W,此时激光平均输出功率为15mw。示波器记录脉冲宽度680ps,实测光束质量因子M^2小于1.5。并在实验基础上对激光器工作的稳定性进行了分析,结果表
Resumo:
高重复频率、窄脉宽的全固态激光器种子源级联光纤放大器是获得高功率脉冲激光输出的有效手段.短上能态寿命的Nd∶YVO4晶体在连续抽运、高重复频率Q开关工作时容易得到接近连续性能的平均输出功率.理论分析了声光(AO)调Q器件中影响输出能量和脉宽大小的主要因素,优化配置了腔型参数.利用激光二极管(LD)光纤耦合模块端面抽运Nd∶YVO4晶体,实现了声-光调Q重复频率100 kHz以上,脉宽20 ns以下,波长1064 nm的激光输出.在抽运功率5.7 W时,得到了脉宽15.3 ns,重复频率150 kHz的种子光输出,在级联单级光纤放大器后,得到了20 W的输出.
Resumo:
The experiment result of Nd:YVO4 laser pumped by laser diode that was amplified by double-cladding Yb3+ fiber is reported. Stable mode-locking pulses are obtained at repetition rate of 320 MHz and the output power is 15 mW. When laser power is amplified by Yb3+- doped double-cladding fiber amplifier, its power can get to 600 mW. Based on these, experiment of double-frequency is carried out, and green laser with power of 4 mW is obtained. (c) 2007 Wiley Periodicals, Inc.
Resumo:
In this article, we report an all-fiber master oscillator power amplifier (MOPA) system, which can provide high repetition rate and nanosecond pulse with diffraction-limit. The system was constructed using a (2 + 1) X 1 multimode combiner. The Q-Switched, LD pumped Nd:YVO4 solid-state laser wets used (is master oscillator. The 976-nm fiber-coupled module is used as pump source. A 10-m long China-made Yb3+-doped D-shape double-clad large-mode-area fiber was used as amplifier fiber. The MOPA produced as much as 20-W average power with nanosecond pulse and near diffraction limited. The pulse duration is maintained at about 15 its during 50-175 kHz. The system employs a simple and compact architecture and is therefore suitable for the use in practical applications such as scientific and military airborne LIDAR and imaging. Based oil this system. the amplification performances of. the all fiber amplifier is investigated. (C) 2008 Wiley Periodicals, Inc.
Resumo:
We report, for the first time to the best of our knowledge, on a passively Q-switched Nd:YVO4 laser with a GaAs absorber grown at low temperature (LT) by metal organic vapor phase expitaxy. Using the LT GaAs absorber as well as an output coupler, a passively Q-switched laser whose pulse duration is as short as 90 ns, was obtained.
Resumo:
Single-frequency output power of 12 W at 1064 nm is demonstrated. Pumped by a fiber-coupled diode laser, the Nd:YVO4 produces 58.6% of the slope efficiency with respect to absorbed pump power, and 52.7% of the optical-optical efficiency and nearly diffraction-limited output with a beam quality parameter of M-2 approximate to 1.11. To the best of our knowledge, this is the highest slope efficiency and optical-optical efficiency in single-frequency Nd:YVO4 ring laser. The slope efficiency of the single frequency laser is close to the limit of the efficiency. [GRAPHICS] output spectrum of the single-frequency Nd:YVO4 ring laser
Resumo:
High efficiency, TEM00 mode, high repetition rate laser pumped by 887 nm is reported. 20.1 W output laser emitting at 1064 nm is achieved in a 0.3 at % Nd-doped Nd:YVO4, which absorbs pumping light of 30.7 W at 887 nm. The opto-optic efficiency and the slope efficiency are 65.5 and 88.5%, respectively. The stable Q-switching operation worked well at 100 kHz and the beam quality is near diffraction-limit with M-2 factor measured as M-2 approximate to 1.2. And the pulse waveform is analyzed in this paper.
Resumo:
Polarization self-modulation effect in a free oscillated Nd:YAG laser is investigated after a quarter wave plate is introduced independently in the two positions of the cavity. As described in the previous experiments, the intensity components in the orthogonal directions are modulated with a period of the round-trip time or twice. Different pulse shapes reveal that the seed field from the spontaneous emission is not uniform and seems to be stochastic for each pulse.
Resumo:
A novel composite coating was synthesized by laser alloying of zirconium nanoparticles on an austenite stainless steel surface using a pulsed Nd:YAG laser. The coating contained duplex microstructures comprising an amorphous phase and an austenitic matrix. A discontinuous zirconium-containing region formed at a depth of 16 mum below the surface. The amorphous phase was present in the zirconium-rich region, with the composition of zirconium ranging from 7.8 to 14.5 at. pet. The formation of the amorphous phase was attributed to the zirconium addition. The hardness, corrosion, and wear-corrosion resistance of the irradiated coating were evidently enhanced compared to those of the stainless steel.
Resumo:
The thermal stability of Nd60Fe20Co10Al10 bulk metallic glass (BMG) has been studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), isochronal dilatation and compression tests. The results show that the glass transition of the BMG takes place quite gradually between about 460 and 650 K at a heating rate of 0.17 K/s. Several transformation processes are observed during continuous heating with the first crystallization process beginning at about 460 K, while massive crystallization takes place near the solidus temperature of the alloy. The positive heat of mixing between the two major constituents, Nd and Fe, and, consequently, a highly inhomogeneous composition of the attained amorphous phase are responsible for the anomalous thermal stability in this system. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
报道了激光二极管抽运的Nd:YVO_4晶体、LBO晶体Ⅱ类非临界相位匹配腔内倍频大功率红光激光器。通过对激光晶体热效应的考虑,设计了热不灵敏腔,采用低掺杂浓度Nd:YVO_4晶体,获得了671nm红光的最高输出为890mW。
Resumo:
Compressive deformation behavior of the Nd60Fe20Co10Al10 bulk metallic glass was characterized over a wide strain rate range (6.0 x 10(-4) to 1.0x10(3) s(-1)) at room temperature. Fracture stress was found to increase and fracture strain decrease with increasing applied strain rate. Serrated flow and a large number of shear bands were observed at the quasi-static strain rate (6.0 x 10(-4)s(-1)). The results suggest that the appearance of a large number of shear bands is probably associated with flow serration observed during compression; and both shear banding and flow serration are a strain accommodation and stress relaxation process. At dynamic strain rates (1.0 x 10(3) s(-1)), the rate of shear band nucleation is not sufficient to accommodate the applied strain rate and thus causes an early fracture of the test sample. The fracture behavior of the Nd60Fe20Co10Al10 bulk metallic glass is sensitive to strain rate.