63 resultados para National rock
Resumo:
In this study several parameters critical to the success of cryopreserving Sydney rock oyster (Saccostrea glomerata) larvae were investigated. They were: (1) cryoprotectants (10% dimethyl sulfoxide and 10% propylene glycol). (2) freezing protocols (with or without the seeding step). (3) larval concentrations (1,000, 3,000, 5,000, 10,000, 30,000 individuals mL(-1)). and (4) larval ages (6, 12, 24, 48 and 96 h old). The survival rates were determined as percentages of postthaw larvae performing active movements for the 6 and 12 h larvae or active cilia movement for the 24, 48 and 96 h larvae. Analyses showed that the difference in survival rates between different age classses was significant in all the experiments conducted, with the maximum survival rate being achieved in the 24-h-old larvae the postthaw survival rates of larvae cryopreserved with 10% dimethyl sulfoxide (93.1 +/- 0.2%) were significantly higher (P < 0.001) that those with 10% propylene glycol (81.5 +/- 0.4%). Differences in postthaw survival rates between different concentrations (1,000 30,000 individuals mL(-1)) were not significant within each of the three larval age classes (6-, 12-, and 24-h-old ) used.
Resumo:
Wave generation by the falling rock in the two-dimensional wave tank is experimentally and numerically studied, where the numerical model utilizes the boundary element method to solve the fully nonlinear potential flow theory. The wave profiles at different times are measured in the laboratory, which are also used to test the numerical model. Comparisons show that the experimental and numerical results are in good agreement, and the numerical model can be used to simulate the wave generation due to the submarine rock falling. Further numerical tests on the influences of the rock size, density, initial position and the falling angle on the wave elevation of the generated waves are performed, respectively. The results show that the size and density of the rock have strong effects on the maximum elevation of the generated wave, while the effects of the initial position and the falling angle of the rock are also significant. When the size or the density of the rock increases, the maximum elevation of the generated wave increases. The same effect on the generated wave would be produced if the initial position of the rock becomes closer to the surface, or the falling angle between the falling route and the vertical direction turns larger. In addition, the present numerical tests reveal that the submarine rock falling provides a new generation method for the breaking wave in the wave tank.
Resumo:
The effects of the timing of first feeding (0, 1 and 2 days after yolk exhaustion) and starvation on the point-of-no-return (PNR), survival and growth of laboratory-reared rock bream larvae were studied under controlled conditions. Larvae began to feed exogenously at 3 days after hatching (dah) and reached PNR on 54 h after yolk exhaustion at 22 +/- 1.5 degrees C. Larvae growth was significantly affected by the time of first exogenous feeding. The growth of 0 day delayed first feeding larvae was obviously faster than those of the other delayed first feeding larvae (P<0.05) whether at 7 dab (SL=3.40 mm, SGR=5.7, CV=4.0) or at 15 dah (SL=4.85 mm, SGR=6.1, CV=8.2) with a more uniform size distribution. Survival of 0 day delayed first feeding larvae and I day delayed first feeding larvae was 13% and 8% at the end of experiment, respectively, while no larvae survived up to 7 dah for 2 days delayed first feeding larvae and unfed larvae. Food resulted in a progressive deterioration of the larval digestive system and atrophy of skeletal muscle fibre. The ratios of head length to SL (standard length), body height to SL and eye diameter to SL were the most sensitive morphometric indices to detect the effects of fasting on larval condition. Present results showed that the combination of morphological and morphometric variables could be used to evaluate the nutritional condition of rock bream larvae. In order to avoid the potential mortality and gain better development, survival and growth in industrial production, the rock bream larvae must establish successful first feeding within 2 days after yolk exhaustion. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
China’s annual oil import volume has been increasing in recent years, but the oil price in the international market fluctuates and poses a severe threat to China’s economic development and national security. Therefore, it is of great importance to study the gas and oil exploration of Pre-Cenozoic Residual Basins in Yellow Sea. Yellow Sea has widespread and thick Mesozoic and Paleozoic strata that contain multilayer source rock. Hence, Yellow Sea Mesozoic and Paleozoic strata have good conditions of forming Pre-Cenozoic hydrocarbon reservoirs. Pre-Cenozoic Residual Basins are usually buried deep and then transformed many times in its long evolutional history. These characteristics make it difficult to apply a single method in exploring Pre-Cenozoic Residual Basins. On the other hand, it is highly effective to solve key problems of gas and oil exploration of Pre-Cenozoic Residual Basins in Yellow Sea by using integrated geological and geophysical methods which make full use of the advantages of various exploring techniques. Based on the principle of “the region controls the local; the deep restricts the shallow,” this study focuses on Pre-Cenozoic Residual Basins in Yellow Sea to describe the structure frame of its distribution, with gravity, magnetic, seismic, drill-hole and geological data and previous research findings. In addition, the distribution characteristics of Pre-Cenozoic Residual Basins in Yellow Sea are also analyzed. This paper explores the characteristics of error between gravity forward with constant density and gravity forward with variable density through the study on 2-D and 3-D gravity forward in frequency domain. The result shows that there is a linear relationship between error and depth of 2-D geological model but there is a nonlinear relationship between error and depth of 3-D geological model. The error can be removed according to its linear characteristics or statistical nature of nonlinear characteristics. There is also error between gravity inversion with constant density and gravity inversion with variable density due to variable density and edge-effect. Since there are not noticeable rules between the error and the two causes as variable density and edge-effect, this study adopts gravity inversion with variable density and methods to eliminate the edge-effect in basement inversion to improve inversion accuracy. Based on the study on the rock physical properties and strata distribution of Yellow Sea and adjacent regions, this study finds that there is a big density contrast between Cretaceous-Jurassic strata and their substratum. The magnetic basement of south Yellow Sea is regarded as top of Archeozoic-Proterozoic early strata, and there are double magnetic basements in north Yellow Sea. Gravity and magnetic data are used to inverse the gravity basement and magnetic basement of Yellow Sea, with seismic and drill-hole data as constrains. According to data of gravity and magnetic basement distribution, the depth of Cenozoic strata and previous research findings, this paper calculates the thickness of the Mesozoic and Pre-Mesozoic Residual Basins, draws the distribution outline of Pre-Cenozoic Residual Basins in Yellow Sea, and analyzes its macro-distribution characteristics. Gravity inversion is applied on a typical geological profile in Yellow Sea to analyze the characteristics of its fractures and magnetic basements. The characteristics of Pre-Cenozoic Residual Basins distribution outline in Yellow Sea and the fractures and magnetic basements of its typical profile shown by profile inversion provides new geophysical evidence for these structure views such as “the South Yellow Sea and the North Yellow Sea belong to different structural units” and “Sino-Korea and Yangtze blocks combine along Yellow Sea East Fractured Zone in Yellow Sea”.
Resumo:
Located in the Central and West African, Chad, which is not well geological explored, is characterized by Mesozoic- Cenozoic intra-continental rift basins. The boreholes exposed that, during Mesozoic-Cenozoic times, volcanic activities were intense in these basins, but study on volcanic rocks is very weak, especially on those embedded in rift basins, and so far systematic and detailed work has still no carried out. Based on the project of China National Oil and Gas Exploration and Development Corporation, “The analysis of reservoir condition and the evaluation of exploration targets of seven basins in block H in Chad”, and the cooperative project between Institute of Geology and Geophysics, CAS and CNPC International (Chad) Co. Ltd., “Chronology and geochemistry studies on Mesozoic-Cenozoic volcanic rocks from southwestern Chad Basins”, systematic geochronology, geochemistry and Sr-Nd-Pb isotopic geochemistry studies on volcanic rocks from southwestern Chad basins have been done in the thesis for the first time. Detailed geochronological study using whole-rock K-Ar and Ar-Ar methods shows the mainly eruption ages of these volcanic rocks are Late Cretaceous- Paleogene. Volcanic rocks in the well Nere-1 and Figuier-1 from Doba basin are products of the Late Cretaceous which majority of the K-Ar (Ar-Ar) ages fall in the interval 95-75 Ma, whereas volcanic rocks in the well Ronier-1 from Bongor Basin and the Well Acacia-1 from Lake Chad Basin formed in the Paleogene which the ages concentrated in 66-52Ma. Two main periods of volcanic activity can be recognized in the study area, namely, the Late Cretaceous period and the Paleogene period. Volcanic activities have a general trend of south to north migration, but this may be only a local expression, and farther future studies should be carried on. Petrology study exhibits these volcanic rocks from southwestern Chad basins are mainly tholeiitic basalt. Major- and trace elements as well as Sr-Nd-Pb isotopic geochemistry studies show that the late Cretaceous and the Paleogene basalts have a definitely genetic relationship, and magmas which the basalts in southwestern Chad basins derived from were produced by fractional crystallization of olivine and clinopyroxene and had not do suffered from crustal contamination. These basalts are prominently enriched light rare earth elements (LREE), large-ion lithophile elements (LILE) and high field strength elements (HFSE) and depleted compatible elements. They have positive Ba, Pb, Sr, Nb, Ta, Zr, Hf anomalies and negative Th, U, P,Y anomalies. It is possible that the basalts from southwestern Chad basins mainly formed by mixing of depleted mantle (DM) and enriched mantle (EMⅡ) sources. The late Cretaceous basalts have higher (87Sr/86Sr)i ratios than the Paleogene basalts’, whereas have lower (143Nd/144Nd)i ratios than the latter, showing a significant temporal evolution. The mantle sources of the Late Cretaceous basalts may have more enriched mantle(EMⅡ) compositions, whereas those of the Paleogene basalts are relatively more asthenospheric mantle (DM) components. The mantle components with temporal change observed in basalts from Chad basins were probably correlated with the asthenospheric mantle upwelling and lithospheric thinning in Central and Western Africa since Mesozoic. Mesozoic- Cenozoic Volcanism in Chad basins probably is a product of intra- plate extensional stress regime, corresponded to the tectonic setting of the whole West and Central African during Cretaceous. Volcanism is closely correlated with rifting. As time passed from early period to late, the basaltic magma of Chad basins, characterized with shallower genetic depth, higher density and smaller viscosity, probably indicates the gradual strengthening evolution of the rifting. In the initial rife stage, volcanic activities are absent in the study area. Volcanic activities are basiccally corresponded with the strong extensional period of Chad basins, and the eruption of basalts was slightly lagged behind the extensional period. In the post-rift stage (30-0Ma), these basins shifted to the thermal sag phase, volcanic activities in the study area significantly decreased and then terminated.
Resumo:
Jiaodong Peninsula is the largest repository of gold in China. Varieties of studies have been involved in the mechanism of metallogenesis. This thesis is a part of the project "Study of basic geology related to the prespecting of the supra-large deposits" which supported by National Climbing Program of China to Prof. Zhou. One of the key scientific problems is to study the age and metallogenic dynamics of ore deposit and to understand how interaction between mantle and crust constrains on metallogenesis and lithogenesis. As Jiaodong Peninsula to be study area, the Rb-Sr, Sm-Nd and Pb isotopic systematics of pyrite and altered rocks are measured to define the age and origin of gold. The elemental and Sr-Nd-Pb isotopic compositions of dikes and granites was studied to implicate the source and lithogenesis of the dike and granite and removal of lithosphere and the interaction between mantle and crust in the Jiaodong Peninsula. Considering the tectonic of Jiaodong Peninsula, basic on the time and space, this thesis gives a metallogenic dynamics of gold mineralization and discusses the constraints of the interaction between mantle and crust on the metallogenesis and lithogenesis. This thesis reports the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposit in Linglong, Jiaodong Peninsula and the results demonstrate this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yields an isochron age of (121.6-122.7) Ma, whereas, those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and 110.0-111.7 Ma. Studies of characteristic of gold deposit, microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, it was only mixed by two end members, i.e., the primitive hydrothermal fluids and wall rocks. However, the isochron age of pyrite samples constrains the age of gold mineralization, i.e., early Cretaceous, which is in good consistence with the published U-Pb ages of zircon by using the SHRIMP technique. The whole rock Rb-Sr isochron age of altered rocks indicates that the age of gold mineralizing in the Xincheng gold deposit is 116.6 ± 5.3 Ma. The Sr, Nd and Pb isotopic compositions of pyrite and altered rocks indicate that the gold and relevant elements were derived from multi-sources, i.e. dikes derived from enriched lithospheric mantle and granites, granodiorites and metamorphic rocks outcropped on the crust. It also shows that the hydrothermal fluids derived from mantle magma degassing had play an important role in the gold mineralizing. The major and trace elements, Sr-Nd-Pb isotopic data of granites and granodiorites suggest that the Linglong Granite and Kunyushan Granite were derived from partial melting of basement rocks in the Jiaodong Peninsula at post-collision of North China Craton with South China Craton. Guojialing Granodiorite was considered to be derived from a mixture source, that is, mixed by magmas derived from an enriched lithospheric mantle and crust during the delamination of lithosphere induced by the subduction of Izanagi Plate and the movement of Tancheng-Lujiang Fault. There are kinds of dikes occurred in the Jiaodong Peninsula, which are accompanying with gold mineralization in time and space. The dikes include gabrro, diabase, pyroxene diorite, gabrrophyre, granite-porphyry, and aplite. The whole rock K-Ar ages give two age intervals: 120-124 Ma for the dikes that erupted at the gold mineralizing stage, and <120 Ma of the dikes that intruded after gold mineralizing. According to the age and the relationship between the dikes and gold mineralizing, the dikes could be divided into two groups: Group I (t = 120-124 Ma) and Group II (t < 120Ma). Group I dikes show the high Mg and K, low Ti contents, negative Nb anomalies and positive Eu anomalies, high ~(87)Sr/~(86)Sr and negative εNd(t) values and an enrichment in light rare earth elements, large ion lithosphile elements and a depletion in high field strength elements. Thus the elemental and isotopic characteristics of the Group I dikes indicate that they were derived from an enriched lithospheric mantle perhaps formed by metasomatism of the melt derived from the recycled crustal materials during the deep subduction of continent. In contrast, the Group II dikes have high Ti, Mg and K contents, no negative Nb anomalies, high ~(87)Sr/~(86)Sr and positive or little negative εNd(t) values, which indicate the derivation from a source like OIB-source. The geochemical features also give the tectonic constraints of dikes, which show that Group I dikes were formed at continental arc setting, whereas Group II dikes were formed within plate background. Considering the tectonic setting of Jiaodong Peninsula during the period of gold mineralizing, the metallogenic dynamics was related to the subduction of Izanagi Plate, movement of Tancheng-Lujiang Fault and removal of lithopheric mantle during Late Mesozoic Era.
Resumo:
The East Kunlun area of Xinjiang (briefly EKAX) is the western part of broadly speaking East Kunlun orogenic zone. The absence of geological data (especially ophiolites) on this area has constrained our recognition to its geology since many years. Fund by National 305 Item (96-915-06-03), this paper, by choosing the two ophiolite zones (Muztag and Southwestern Margin of Aqikekule Lake ophiolite zones) exposed at EKAX as the studied objects and by the analysis of thin section, electron probe, XRF, ICP-MS, SEM and Sm-Nd isotope, totally and sys ematically dealt with the field geological, petrological, minerological, petrochemical and geochemical characteristics (including trace, rare earth element and Sm-Nd isotope) and the tectonic setting indicated by them for each ophilite zone. Especially, this paper discussed the trace and rare earth element patterns for metamorphic peridotites, their implications and related them to the other components of ophiolite in order to totally disclose ophiolite origins. Besides, this paper also studied the petrological, geochemical and paleobiological characteristics for the cherts coexsisted with the Muztag ophiolite and the tectonic setting indicated by them. Based on these, the author discussed the tectonic evolution from Proterozoic to Permian for this area. For Muztag ophiolite, their field geological, petrological, minerological, petrochemical and geochemical characteristics show that: ① outcropped along the Muztag-Jingyuhu fault with west-to-east strike, the ophiolite is composed of such three components as metamorphic peridotites, cumulates and volcanic rocks; ② metamophic peridotites consist of such types as lherzolites, serpentinized lherzolites and serpentinites, only pyroxenites is seen of cumulates and volcanic rocks include basalts, basaltic andesites and andesites; ③ mineralogical data on this ophiolite suggest it formed in supra-subduction zone (SSZ)environment, and its mantle wedge is heterogeneous; ④ whole-rock TiO_2 and Al_2O_3 of metamorphic peridotites indicate their original environment with the MORB and SSZ characteristics; ⑤ metamorphic peridotites have depleted LREE and flat REE patterns and volcanic rocks have enriched LREE patterns; ⑥ trace element characteristics of metamorphic peridotites imply that they had undergone Nb and Ta enrichment event after partial melting; ⑦ trace element characteristics of volcanic rocks and their tectonic diagrams show they are formed in the spreading and developed island arc environment with back-arc basin, such as rifted island arc, which is supported by the ε_(Nd)(t) -2.11~+3.44. In summary, the above evidence implies that Muztag ophiolite is formed in SSZ environment, where heterogeneous mantle wedge was metasomatised by the silica-enriched melt from subducted sediments and/or oceanic crust, which makes the mantle wedge enriched again, and this enriched mantle wedge later partially melted to form the volcanic rocks. For Southwestern Margin of Aqikekule Lake ophiolite, their field geological, petrological, minerological, petrochemical and geochemical characteristics show that: ① it outcropped as tectonic slices along the near west-to-east strike Kunzhong fault and is composed of metamorphic perodotties, cumulates and volcanic rocks, in which, chromites are distributed in the upper part of metamorphic peridotites as pods, or in the lower part of cumulates as near-strata; ② metamorphic peridotites include serpentinites, chromite-bearing serpentinites, thlorite-epidote schists and chromitites, of which, chromitites have nodular and orbicular structure, and cumulates include pyroxenits, serpentinites, chromite-bearing serpentinites, chromites and metamorphically mafic rocks and only basalts are seen in volcanic rocks; ③ Cr# of chromites suggest that they formed in the SSZ and Al_2O_3 and TiO_2 of metamorphic peridotites also suggest SSZ environment; ④metamorphic peridotites have V type and enriched LREE patterns, cumulates have from strongly depleted LREE, flat REE to enriched LREE patterns with universally striking positive Eu anomalies and basalts show flat REE or slight enriched LREE patterns with no Eu anomalies; ⑤ trace element and Sm-Nd isotope characteristics of metamorphic peridotites imply their strikingly heterogeneous mantle character(ε_(Nd)(t)+4.39~+26.20) and later Nb, Ta fertilization; ⑥ trace element characteristics of basalts and their tectonic diagrams show they probably formed in the rifted island arc or back-arc basin enviromnent. In summary, the above evidence shows that this ophiolite formed in the SSZ environment and melts from subudcted plate are joined during its formation. Rare earth element, whole-rock and sedimentary characteristics of cherts with the Muztag ophiolite show that they formed in the continental margin environment with developed back-arc basin, and radiolarias in the cherts indicate that the upper age of Muztag ophiolite is early carboniferous. Based on the accreted wedge models of Professor Li Jiliang for Kunlunshan Mountain and combined with study on the two typical ophiolite profiles of EKAX, the author discussed the tectonic evolution of EKAX from Proterzoic to Permian.
Resumo:
Natural gas pays more important role in the society as clean fuel. Natural gas exploration has been enhanced in recent years in many countries. It also has prospective future in our country through "85" and "95" national research. Many big size gas fields have been discovered in different formations in different basins such as lower and upper Paleozoic in Erdos basin, Tertiary system in Kuche depression in Tarim basin, Triassic system in east of Sichuan basin. Because gas bearing basins had been experienced multiple tectogenesis. The characteristics of natural gases usually in one gas field are that they have multiple source rocks and are multiple maturities and formed in different ages. There has most difficult to research on the gas-rock correlation and mechanism of gas formation. Develop advanced techniques and methods and apply them to solve above problems is necessary. The research is focused on the critical techniques of geochemistry and physical simulation of gas-rock correlation and gas formation. The lists in the following are conclusions through research and lots of experiments. I 8 advanced techniques have been developed or improved about gas-rock correlation and gas migration, accumulation and formation. A series of geochemistry techniques has been developed about analyzing inclusion enclave. They are analyzing gas and liquid composition and biomarker and on-line individual carbon isotope composition in inclusion enclave. These techniques combing the inclusion homogeneous temperature can be applied to study on gas-rock correlation directly and gas migration, filling and formation ages. Technique of on-line determination individual gas carbon isotope composition in kerogen and bitumen thermal pyrolysis is developed. It is applied to determine the source of natural is kerogen thermal degradation or oil pyrolysis. Method of on-line determination individual gas carbon isotope composition in rock thermal simulation has being improved. Based on the "95"former research, on-line determination individual gas carbon isotope composition in different type of maceral and rocks thermal pyrolys is has been determined. The conclusion is that carbon isotope composition of benzene and toluene in homogenous texture kerogen thermal degradation is almost same at different maturity. By comparison, that in mixture type kerogen thermal pyrolysis jumps from step to step with the changes of maturity. This conclusion is a good proof of gas-rock dynamic correlation. 3. Biomarker of rock can be determined directly through research. It solves the problems such as long period preparing sample, light composition losing and sample contamination etc. It can be applied to research the character of source rock and mechanism of source rock expulsion and the path of hydrocarbon migration etc. 4. The process of hydrocarbon dynamic generation in source rock can be seen at every stage applying locating observation and thermal simulation of ESEM. The mechanism of hydrocarbon generation and expulsion in source rock is discussed according to the experiments. This technique is advanced in the world. 5. A sample injection system whose character is higher vacuum, lower leaks and lower blank has been built up to analyze inert gas. He,Ar,Kr and Xe can be determined continuously on one instrument and one injection. This is advanced in domestic. 7. Quality and quantity analysis of benzene ring compounds and phenolic compounds and determination of organic acid and aqueous gas analysis are applied to research the relationship between compounds in formation water and gas formation. This is another new idea to study the gas-rock correlation and gas formation. 8. Inclusion analysis data can be used to calculate the Paleo-fluid density, Paleo-geothermal gradient and Paleo-geopressure gradient and then to calculate the Paleo-fluid potential. It's also a new method to research the direction of hydrocarbon migration and accumulation. 9. Equipment of natural gas formation simulation is produced during the research to probe how the physical properties of rock affect the gas migration and accumulation and what efficiency of gas migrate and factors of gas formation and the models of different type of migration are. II study is focused on that if the source rocks of lower Paleozoic generated hydrocarbon and what the source rocks of weathered formation gas pool and the mechanism of gas formation are though many advanced techniques application. There are four conclusions. 1.The maturity of Majiagou formation source rocks is higher in south than that in north. There also have parts of the higher maturity in middle and east. Anomalous thermal pays important role in big size field formation in middle of basin. 2. The amount of gas generation in high-over maturity source rocks in lower Paleozoic is lager than that of most absorption of source rocks. Lower Paleozoic source rocks are effective source rocks. Universal bitumen exists in Ordovician source rocks to prove that Ordovician source rocks had generated hydrocarbon. Bitumen has some attribution to the middle gas pool formation. 3. Comprehensive gas-rock correlation says that natural gases of north, west, south of middle gas field of basin mainly come from lower Paleozoic source rocks. The attribution ratio of lower Paleozoic source rocks is 60%-70%. Natural gases of other areas mainly come from upper Paleozoic. The attribution ratio of upper Paleozoic source rocks is 70%. 4. Paleozoic gases migration phase of Erdos basin are also interesting. The relative abundance of gasoline aromatic is quite low especially toluene that of which is divided by that of methyl-cyclohexane is less than 0.2 in upper Paleozoic gas pool. The migration phase of upper Paleozoic gas may be aqueous phase. By comparison, the relative abundance of gasoline aromatic is higher in lower Paleozoic gas. The distribution character of gasoline gas is similar with that in source rock thermal simulation. The migration phase of it may be free phase. IH Comprehensive gas-rock correlation is also processed in Kuche depression Tarim basin. The mechanism of gas formation is probed and the gas formation model has been built up. Four conclusions list below. 1. Gases in Kuche depression come from Triassic-Jurassic coal-measure source rocks. They are high-over maturity. Comparatively, the highest maturity area is Kelasu, next is Dabei area, Yinan area. 2. Kerogen thermal degradation is main reason of the dry gas in Kuche depression. Small part of dry gas comes from oil pyrolysis. VI 3.The K12 natural gas lays out some of hydro-gas character. Oil dissolved in the gas. Hydro-gas is also a factor making the gas drier and carbon isotope composition heavier. 4. The mechanism and genesis of KL2 gas pool list as below. Overpressure has being existed in Triassic-Jurassic source rocks since Keche period. Natural gases were expulsed by episode style from overpressure source rocks. Hetero-face was main migration style of gas, oil and water at that time. The fluids transferred the pressure of source rocks when they migrated and then separated when they got in reservoir. After that, natural gas migrated up and accumulated and formed with the techno-genesis. Tectonic extrusion made the natural gas overpressure continuously. When the pressure was up to the critical pressure, the C6-C7 composition in natural gas changed. The results were that relative abundance of alkane and aromatic decreased while cycloalkane and isoparaffin increased. There was lots of natural gas filling during every tectonic. The main factors of overpressure of natural gas were tectonic extrusion and fluid transferring pressure of source rocks. Well preservation was also important in the KL2 gas pool formation. The reserves of gas can satisfy the need of pipeline where is from west to east. IV A good idea of natural gas migration and accumulation modeling whose apparent character is real core and formation condition is suggested to model the physical process of gas formation. Following is the modeling results. 1. Modeling results prove that the gas accumulation rule under cap layer and gas fraction on migration path. 2. Natural gas migration as free phase is difficult in dense rock. 3. Natural gases accumulated easily in good physical properties reservoirs where are under the plugging layer. Under the condition of that permeability of rock is more than 1 * 10~(-3)μm~(-1), the more better the physical properties and the more bigger pore of rock, the more easier the gas accumulation in there. On the contrary, natural gas canonly migrate further to accumulate in good physical properties of rock. 4. Natural gas migrate up is different from that down. Under the same situation, the amount of gas migration up is lager than that of gas migration down and the distance of migration up is 3 times as that of migration down. 5. After gas leaks from dense confining layer, the ability of its dynamic plug-back decreased apparently. Gas lost from these arils easily. These confining layer can confine again only after geology condition changes. 6. Water-wetted and capillary-blocking rocks can't block water but gases generally. The result is that water can migrate continuously through blocking rocks but the gases stay under the blocking rocks then form in there. The experiments have proved the formation model of deep basin gas.
Resumo:
In order to realize fast development of the national economy in a healthy way and coordinate progress with whole society, the country has implemented the strategy of development of the western region. An important action of finishing this strategic task is to accelerate the highway construction in the western region, join the western region and places along the coast, the river, the border with goods and materials, technology, and personnel interchanges, and then drive development of the local economy.The western region was influenced by the Himalaya Tectonization in Cenozoic, and the crust rose and became the plateau. In the course of rising, rivers cut down sharply to form a lot of high mountains and gorges.Because of topography and geomorphology, bridges in the traffic construction in the alpine gorge area are needed. Rivers have characteristics of large flow, fast velocity and high and steep river valley, so building a pier in the river is not only very difficult, but also making the cost increase. At the same time, the impact that the pier is corroded and the bridge base that is drawn to be empty by flow are apt to cause destruction of the pier. For those reasons, suspending bridge and cable-stay bridge are usually adopted with the single and large span. For the large span bridge, the pier foundation could receive ten thousand and more vertical strength, bending moment and near kiloton horizontal thrust.Because bank slope in the alpine gorge district is cut deeply and unsettled big, natural stability is worse under endogenic and exogenic force. When bank slope bears heavy vertical strength, bending moment and horizontal thrust facing the river, it will inevitably make the balance state of rock and soil mass change, bridge bank slope deform, and even destroyed. So the key problem at the time of the large span's bridge construction in the alpine gorge area is how to make it stable.So based on the spot investigation, the Engineering Geology Analysis Method is very important to grasp the bank slope stability. It can provide the bank slope stability macroscopic ally and qualitatively, and reference to the indoor calculation. The Engineering Geology Analysis Method is that by way of analyzing and investigating terms of bank slope instability, stability development trend, the ancient rock slide and devolution in the site, stability comprehensive evaluation primarily, current and future stability of bank slope is gotten, realizing the intention to serving the concrete engineering.After the Engineering Geology Analysis Method is applied to project instances of BeiPan River Bridge and BaLin River Bridge, results are accord with bank slope actual conditions, which proves sites are suited to building bridges from site stability.we often meet bank slope stability issues in the traffic construction in the alpine gorge areao Before the evaluation of the bank slope stability, the engineering geological condition is investigated first. After that, the next exploration target and geology measures are decided. So, the Engineering Geology Analysis Method that the investigation of the engineering geological condition is the main content is quite important in practice. The other evaluations of the bank slope stability are based on it. Because foundation receives very heavy load, for the big span's bridge in the alpine gorge area, a long pile of the large diameter (D^0.8m) is usually selected. In order to reflect rock mass's deformation properties under rock-socketed pile function, the author has used the FLAG30 software for rock and soil mass and done many numerical simulations. By them, the author launches the further investigation on deformation properties of bank slope under different slope angle, pile length, diameter, elastic modulus, load, bank slope's structure, etc. Some conclusion meaningful to the design and produce are obtained.