105 resultados para Narrow-band interference filters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A kind of ultra-narrow dual-channel filter is proposed in principle and demonstrated experimentally. This filter is designed by means of two sampled fibre Bragg gratings (SFBGs), where one is periodic 0-pi sampling and the other is symmetrical spatial sampling. The former can create two stopbands in the transmission spectra and the latter can produce two ultra-riarrow passbands. Our filter has the 3-dB bandwidth of about 1 pm, whose value is two orders of magnitude less than the bandwidth of the traditional SFBG filters. The proposed filter has a merit that the channel spacing remains unchanged when tuning the filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

III-V pentenary semiconductor AlGaInPAs with a direct band gap of up to 2.0 eV has been grown successfully on GaAs substrates by liquid phase epitaxy;(LPE). With the introduction of the energy bowing parameters of quaternaries, the theoretical calculations agree well with the measured PL peak energy data from pentenary samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the effect of particle size on the formation of adiabatic shear band in 2024 All matrix composites reinforced with 15% volume fraction of 3.5, 10 and 20 mum SiC particles was investigated by making use of split Hopkinson pressure bar (SHPB). The results have demonstrated that the onset of adiabatic shear banding in the composites strongly depends on the particle size and adiabatic shear banding is more readily observed in the composite reinforced with small particles than that in the composite with large particles. This size dependency phenomenon can be characterized by the strain gradient effect. Instability analysis reveals that high strain gradient is a strong driving force for the formation of adiabatic shear banding in particle reinforced metal matrix composites (MMCp).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic localization of saturated soil is investigated by considering the influence of higher strain gradient. It is shown that the strain gradient has a significant influence on the evolution of shear band in saturated soil and that the width of shear band is proportional to the square root of the strain gradient softening coefficient. The numerical simulation is processed to investigate the influences of shear strain gradient and other factors on the evolution of shear band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since convective boiling or highly subcooled single-phase forced convection in micro-channels is an effective cooling mechanism with a wide range of applications, more experimental and theoretical studies are required to explain and verify the forced convection heat transfer phenomenon in narrow channels. In this experimental study, we model the convective boiling behavior of water with low latent heat substance Freon 113 (R-113), with the purpose of saving power consumption and visualizing experiments. Both heat transfer and pressure drop characteristics were measured in subcooled and saturated concentric narrow gap forced convection boiling. Data were obtained to qualitatively identify the effects of gap size, pressure, flow rate and wall superheat on boiling regimes and the transition between various regimes. Some significant differences from unconfined forced convection boiling were found,and also, the flow patterns in narrow vertical annulus tubes have been studied quantitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

formula for the thickness of a shear band formed in saturated soils under a simple shear or a combined stress state has been proposed. It is shown that the shear band thickness is dependent on the pore pressure properties of the material and the dilatancy rate, but is independent of the details of the combined stress state. This is in accordance with some separate experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified single-pulse loading split Hopkinson torsion bar (SSHTB) is introduced to investigate adiabatic shear banding behavior in SiCp particle reinforced 2024 Al composites in this work. The experimental results showed that formation of adiabatic shear band in the composite with smaller particles is more readily observed than that in the composite with larger particles. To characterize this size-dependent deformation localization behavior of particle reinforced metal matrix composites (MMCp), a strain gradient dependent shear instability analysis was performed. The result demonstrated that high strain gradient provides a deriving force for the formation of adiabatic shear banding in MMCp. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An empirical study is made on the fatigue crack growth rate in ferrite-martensite dual-phase (FMDP) steel. Particular attention is given to the effect of ferrite content in the range of 24.2% to 41.5% where good fatigue resistance was found at 33.8%. Variations in ferrite content did not affect the crack growth rate View the MathML sourcewhen plotted against the effective stress intensity factor range View the MathML source which was assumed to follow a linear relation with the crack tip stress intensity factor range ΔK. A high View the MathML source corresponds to uniformly distributed small size ferrite and martensite. No other appreciable correlation could be ralated to the microstructure morphology of the FMDP steel. The closure stress intensity factor View the MathML source, however, is affected by the ferrite content with View the MathML source reaching a maximum value of 0.7. In general, crack growth followed the interphase between the martensite and ferrite.

Dividing the fatigue crack growth process into Stage I and II where the former would be highly sensitive to changes in ΔK and the latter would increase with ΔK depending on the View the MathML source ratio. The same data when correlated with the strain energy density factor range ΔS showed negligible dependence on mean stress or R ratio for Stage I crack growth. A parameter α involving the ratio of ultimate stress to yield stress, percent reduction of area and R is introduced for Stage II crack growth so that the View the MathML source data for different R would collapse onto a single curve with a narrow scatter band when plotted against αΔS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic shear localization is a mode of failure that occurs in dynamic loading. It is characterized by thermal softening occurring over a very narrow region of a material and is usually a precursor to ductile fracture and catastrophic failure. This reference source is the first detailed study of the mechanics and modes of adiabatic shear localization in solids, and provides a systematic description of a number of aspects of adiabatic shear banding. The inclusion of the appendices which provide a quick reference section and a comprehensive collection of thermomechanical data allows rapid access and understanding of the subject and its phenomena. The concepts and techniques described in this work can usefully be applied to solve a multitude of problems encountered by those investigating fracture and damage in materials, impact dynamics, metal working and other areas. This reference book has come about in response to the pressing demand of mechanical and metallurgical engineers for a high quality summary of the knowledge gained over the last twenty years. While fulfilling this requirement, the book is also of great interest to academics and researchers into materials performance.

Table of Contents

1Introduction1
1.1What is an Adiabatic Shear Band?1
1.2The Importance of Adiabatic Shear Bands6
1.3Where Adiabatic Shear Bands Occur10
1.4Historical Aspects of Shear Bands11
1.5Adiabatic Shear Bands and Fracture Maps14
1.6Scope of the Book20
2Characteristic Aspects of Adiabatic Shear Bands24
2.1General Features24
2.2Deformed Bands27
2.3Transformed Bands28
2.4Variables Relevant to Adiabatic Shear Banding35
2.5Adiabatic Shear Bands in Non-Metals44
3Fracture and Damage Related to Adiabatic Shear Bands54
3.1Adiabatic Shear Band Induced Fracture54
3.2Microscopic Damage in Adiabatic Shear Bands57
3.3Metallurgical Implications69
3.4Effects of Stress State73
4Testing Methods76
4.1General Requirements and Remarks76
4.2Dynamic Torsion Tests80
4.3Dynamic Compression Tests91
4.4Contained Cylinder Tests95
4.5Transient Measurements98
5Constitutive Equations104
5.1Effect of Strain Rate on Stress-Strain Behaviour104
5.2Strain-Rate History Effects110
5.3Effect of Temperature on Stress-Strain Behaviour114
5.4Constitutive Equations for Non-Metals124
6Occurrence of Adiabatic Shear Bands125
6.1Empirical Criteria125
6.2One-Dimensional Equations and Linear Instability Analysis134
6.3Localization Analysis140
6.4Experimental Verification146
7Formation and Evolution of Shear Bands155
7.1Post-Instability Phenomena156
7.2Scaling and Approximations162
7.3Wave Trapping and Viscous Dissipation167
7.4The Intermediate Stage and the Formation of Adiabatic Shear Bands171
7.5Late Stage Behaviour and Post-Mortem Morphology179
7.6Adiabatic Shear Bands in Multi-Dimensional Stress States187
8Numerical Studies of Adiabatic Shear Bands194
8.1Objects, Problems and Techniques Involved in Numerical Simulations194
8.2One-Dimensional Simulation of Adiabatic Shear Banding199
8.3Simulation with Adaptive Finite Element Methods213
8.4Adiabatic Shear Bands in the Plane Strain Stress State218
9Selected Topics in Impact Dynamics229
9.1Planar Impact230
9.2Fragmentation237
9.3Penetration244
9.4Erosion255
9.5Ignition of Explosives261
9.6Explosive Welding268
10Selected Topics in Metalworking273
10.1Classification of Processes273
10.2Upsetting276
10.3Metalcutting286
10.4Blanking293
 Appendices297
AQuick Reference298
BSpecific Heat and Thermal Conductivity301
CThermal Softening and Related Temperature Dependence312
DMaterials Showing Adiabatic Shear Bands335
ESpecification of Selected Materials Showing Adiabatic Shear Bands341
FConversion Factors357
 References358
 Author Index369
 Subject Index375

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive an explicit expression for predicting the thicknesses of shear bands in metallic glasses. The model demonstrates that the shear-band thickness is mainly dominated by the activation size of the shear transformation zone (STZ) and its activation free volume concentration. The predicted thicknesses agree well with the results of measurements and simulations. The underlying physics is attributed to the local topological instability of the activated STZ. The result is of significance in understanding the origin of inhomogeneous flow in metallic glasses. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials with interpenetrating network structures usually exhibit unexpected merit due to the cooperative interaction. Locally resonant phononic crystals (LRPC) exhibit excellent sound attenuation performance based on a periodical arrangement of sound wave scatters. Inspired by the interpenetrating network structure and the LRPC concept, we develop a locally network anechoic coating (LNAC) that can achieve a wide band of underwater strong acoustic absorption. The experimental results show that the LNAC possesses an excellent underwater acoustic absorbing capacity in a wide frequency range. Moreover, in order to investigate the impact of the interpenetrating network structure, we fabricate a faultage structure sample and the network is disconnected by hard polyurethane (PU). The experimental comparison between the LNAC and the faultage structure sample shows that the interpenetrating network structure of the LNAC plays an important role in achieving a wide band strong acoustic absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To meet the demand of modern acoustic absorbing material for which acoustic absorbing frequency region can be readily tailored, we introduced woodpile structure into locally resonant phononic crystal (LRPC) and fabricated an underwater acoustic absorbing material, which is called locally resonant phononic woodpile (LRPW). Experimental results show that LRPW has a strong capability of absorbing sound in a wide frequency range. Further theoretical research revealed that LRPC units and woodpile structure in LRPW play an important role in realization of wide band underwater strong acoustic absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the enhancement of Kerr nonlinearity in an asymmetric GaAs double quantum well via Fano interference, which is caused by tunneling from the excited subband to the continuum. In our structure, owing to Fano interference, the Kerr nonlinearity can be enhanced by appropriately choosing the values of the detunings and the intensity of the pump field, while cancel the linear and nonlinear absorptions.