65 resultados para Nano- and biomaterials
Resumo:
An analytical model about size-dependent interface energy of metal/ceramic interfaces in nanoscale is developed by introducing both the chemical energy and the structure stain energy contributions. The dependence of interface energy on the interface thickness is determined by the melting enthalpy, the molar volume, and the shear modulus of two materials composing the interfaces, etc. The analytic prediction of the interface energy and the atomic scale simulation of the interface fracture strength are compared with each other for Ag/MgO and Ni/Al2O3 interfaces, the fracture strength of the interface with the lower chemical interface energy is found to be larger. The potential of Ag/MgO interface related to the interface energy is calculated, and the interface stress and the interface fracture strength are estimated further. The effect of the interface energy on the interface strength and the behind mechanism are discussed.
Resumo:
Lanthanide fluoride LnF(3) (Ln = La to Lu) nano-/microcrystals with multiform crystal structures (hexagonal and orthorhombic) and morphologies (separated elongated nanoparticles, aggregated nanoparticles, polyhedral microcrystals) were successfully synthesized by a facile, effective, and environmentally friendly hydrothermal method. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra were used to characterize the samples. The experimental results indicated that the use of NaBF4 is indispensable for obtaining LnF(3) crystal structures.
Resumo:
In this paper, we demonstrate a novel and efficient route by which the shape-controlled synthesis of t-Se nano/microstructures including nanowires, nanorods, nanobelts, microtubes, and flowers, as well as uniform spheres of a-Se, can be readily realized based on solution-mediated heat treatment with commercially available Se powders. X-ray diffraction (XRD), energy-dispersive X-ray spectra (EDS), Raman spectra, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques were used to characterize the samples.
Resumo:
YPO4 nano/microcrystals with multiform crystal phases and morphologies, such as hexagonal nano/submicroprisms, spherical-like nanoparticles, and nanorods with different length/diameter ratios as well as tetragonal nanospindles, have been synthesized via a facile hydrothermal route. A series of controlled experiments indicate that the pH values in the initial solution, phosphorus sources, and the organic additive trisodium citrate (Cit(3-)) are responsible for crystal phase and shape determination of final products. It is found that Cit(3-) as a ligand and shape modifier has the dynamic effect by adjusting the growth rate of different facets under different experimental conditions, resulting in the formation of various geometries of the final products. The possible formation mechanisms for products with diverse architectures have been presented.
Resumo:
The nano-scale luminescent complex of Terbium(III)-trimesic acid (TMA)-1,10-phenanthroline(phen) was successfully synthesized by co-precipitation method in this paper. The chemical formula of the synthesized complex was speculated to be Tb(TMA)(phen)(0.0125)center dot 5H(2)O by elemental analysis, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and Fourier-transform infrared spectroscopy (FTIR). XRD pattern of Tb(TMA)(phen)(0.0125)center dot 5H(2)O indicated that it was a new crystalline complex since the diffraction angle, diffraction intensity and the distance of crystal plane were all different from those of the two ligands. TG curve proved that the synthesized nano-scale luminescent complex was stable in the range from ambient temperature to 464 degrees C in air. TEM images showed that the complex was spherical shape with an average size of 40 nm.
Resumo:
We report here a novel AMP biosensor based on the aptamer-induced disassembly of fluorescent and magnetic nano-silica sandwich complexes with a direct detection limit of 0.1 mu M.
Resumo:
A novel method of grafting ring-opening polymerization of L-lactide (LLA) onto the surface of hydroxyapatite nano-particles (n-HAP) was developed. PLLA was directly connected onto the HAP surface through a chemical linkage. The PLLA-g-HAP particles could be stably dispersed in organic solvent such as chloroform for several weeks. The n-HAP particles still retained the original dimension and shape after the grafting of PLLA. Compared with the P-31 MAS-NMR spectrum of pure HAP powders, there appeared a downfield displacement of 1.2 ppm in the spectrum of PLLA-g-HAP. Fourier transformation infrared (FT-IR) spectra further confirmed the existence of PLLA on the surface of PLLA-g-HAP. The amount of grafted polymer determined by thermal gravimetric analysis (TGA) was about 6% in weight. The tensile strength and elongation at break of the PLLA/PLLA-g-HAP composite containing 8 wt% of PLLA-g-HAP were 55 MPa and about 10-13%, respectively, while those of the PLLA/n-HAP composites were 40 MPa and 3-5%, respectively.
Resumo:
Fully sulfonated polyaniline nano-particles, nano-fibrils and nano-networks have been achieved for the first time by electrochemical homopolymerization of orthanilic acid using a three-step electrochemical deposition procedure in a mixed solvent of acetonitrile (ACN) and water. The diameter of the uniform nano-particles is about 60nm, and the nano-fibrils can be organized in two-dimensional (21)) or three-dimensional (313) non-periodic networks with good electrical contact. Average distance between contacts is about 850 and 600 nm for a 2D and 3D system, respectively. The details of the poly(orthanilic acid) (POA) nano-structure were examined with a field emission scanning electron microscope (SEM). The structure and properties of POA were characterized with FTIR, UV-vis and electrochemical methods. The 3D POA nano-networks coated platinum electrode gave a direct electrochemical behavior of horse heart cytochrome c (Cyt c) immobilized on this electrode surface, a pair of well-defined redox waves with formal potential (E-ol) of -0.032 V (versus Ag/AgCl) was achieved. The interaction between Cyt c and POA makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods were used to investigate the interaction of Cyt c with POA.
Resumo:
Facilitated alkali metal ion (M+= Li+, Na+, K+, Rb+, and Cs+) transfers across the micro- and nano-water/1,2-dichloroethane (W/DCE) interfaces supported at the tips of micro- and nanopipets by dibenzo-18-crown-6 (DB18C6) have been investigated systematically using cyclic voltammetry. The theory developed by Matsuda et al. was applied to estimate the association constants of DB18C6 and M+ in the DCE phase based on the experimental voltammetric results. The kinetic measurements for alkali metal ion transfer across the W/DCE interface facilitated by DB18C6 were conducted using nanopipets or-submicropipets, and the standard rate constants (k(0)) were evaluated by analysis of the experimental voltammetric data. They increase in the following order: k(Cs+)(0) < k(Li+)(0) < k(Rb+)(0) < k(Na+)(0) < k(K+)(0), which is in accordance with their association constants except Cs+ and Li+.
Resumo:
Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3)(.)phen: where HTTA=1-(2-thenoyl)-3,3,3-trifluoracetone and phen=1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate, the inorganic/polymer hybrid material containing Eu(TTA)(3)(.)phen has also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)(3)(.)phen.