82 resultados para NMR SPECTROSCOPY
Resumo:
A new method for synthesis of novel hyperbranched poly(ester-amide)s from commercially available AA' and CBx type monomers has been developed on the basis of a series of model reactions. The hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by thermal polycondensation of carboxyl anhydrides (AA') and multihydroxyl primary amine (CBx) without any catalyst and solvent. The reaction mechanism in the initial stage of polymerization was investigated with in situ H-1 NMR. In the initial stage of the reaction, primary amino groups of 2-amino-2-ethyl-1,3-propanediol (AEPO) or tris(hydroxymethyl)aminomethane (THAM) react rapidly with anhydride, forming an intermediate which can be considered as a new AB(x) type monomer. Further self-polycondensation reactions of the AB. molecules produce hyperbranched polymers. Analysis using H-1 and C-13 NMR spectroscopy revealed the degree of branching of the resulting polymers ranging from 0.36 to 0.55. These hyperbranched poly(ester-amide)s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy, possess high molecular weights with broad distributions and display glass-transition temperatures (T(g)s) between 7 and 96 degreesC.
Resumo:
A novel AB(3)-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were characterized via FTIR and NMR spectroscopy and thermal analysis, and the average degree of branching of the polymers was estimated to be 0.75. The polymers with abundant acetyl end groups were found to be amorphous with lower intrinsic viscosity, better thermal stability and excellent solubility.
Resumo:
Ordered hexagonal mesoporous silica material (JLU-30) has been successfully synthesized in alkaline media at high temperature (> 160 degreesC, using cationic (1,3-dimethyl-2-imidazolidin-2-ylidene)hexadecylmethyl-ammonium bromide (DIHAB) as a template, and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms, differential thermal analysis (DTA), and thermogravimetric analysis (TG), as well as Al-27 and Si-29 nuclear magnetic resonance (NMR) spectroscopy. Mesoporous JLU-30 shows much higher hydrothermal stability than MCM-41. Si-29 NMR spectra indicate that the pore walls of JLU-30 samples synthesized at high temperature (160 degreesC) are fully condensed, giving a Q(4)/Q(3) ratio as high as 6.2. In contrast, MCM-41 synthesized at relatively low temperature (100 degreesC) shows the Q(4)/Q(3) + Q(2) ratio at 1.1. Such unique structural feature might be responsible for the observed highly hydrothermal stability of the mesoporous silica materials (JLU-30).
Resumo:
A novel structural triblock copolymer of poly(gamma-benzyl-L-glutamic acid)-b-poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PBLG-PEO-PCL) was synthesized by a new approach in the following three steps: (1) sequential anionic ring opening polymerization (ROP) of ethylene oxide and epsilon-caprolactone with an acetonitrile/potassium naphthalene initiator system to obtain a diblock copolymer CN-PEO-PCL with a cyano end-group; (2) conversion of the CN end-group into NH2 end-group by hydrogenation to obtain NH2-PEO-PCL; (3) ROP of gamma-benzyl-L-glutamate-N-carboxyanhydrides (Bz-L-GluNCA) with NH2-PEO-PCL as macroinitiator to obtain the target triblock copolymer. The structures from CN-PEO precursor to the triblock copolymers were confirmed by FT-IR and H-1 NMR spectroscopy, and their molecular weights were measured by gel permeation chromatography. The monomer of Bz-L-GluNCA can react almost quantitatively with the amino end-groups of NH2-PEO-PCL macroinitiator by ROP.
Resumo:
Novel PPV derivatives (PCA8-PV and PCA8-MEHPV) containing N-phenyl-carbazole units on the back-bone were successfully synthesized by the Wittig polycondensation of 3,6-bisformyl-N-(4-octyloxy-phenyl)carbazole with the corresponding tributyl phosphonium salts in good yields. The newly formed and dominant trans vinylene double bonds were confirmed by FT-IR and NMR spectroscopy. The polymers (with (M) over bar (w) of 6289 for PCA8-PV and 7387 for PCA8-MEHPV) were soluble in common organic solvents and displayed high thermal stability (T(g)s are 110.7 degreesC for PCA8-PV and 92.2 degreesC for PCA8-MEHPV, respectively) because of the incorporation of the N-phenyl-carbazole units. Cyclic voltammetry investigations (onsets: 0.8 V for PCA8-PV and 0.7 V for PCA8-MEHPV) suggested that the polymers possess enhanced hole injection/transport properties, which can be also attributed to the N-phenyl-carbazole units on the backbone. Both the single-layer and the double-layer light-emitting diodes (LEDs) that used the polymers as the active layer emitted a greenish-blue or bluish-green light (the maximum emissions located 494 nm for PCA8-PV and 507 nm for PCA8-MEHPV, respectively).
Resumo:
A new method for syntheses of hyperbranched poly(ester-amide)s from commercially available A(2) and CBx type monomers has been developed on the basis of a series of model reactions. The aliphatic and semiaromatic hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by in situ thermal polycondensation of intermediates obtained from dicarboxylic acids (A(2)) and multihydroxyl primary amines (CBx) in N,N-dimethylformamide. Analyses of FTIR, H-1 NMR, and C-13 NMR spectra revealed the structures of the polymers obtained. The MALDI-TOF MS of the polymers indicated that cyclization side reactions occurred during polymerization. The hyperbranched poly(ester-amide) s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy. The DBs of the polymers were determined to be 0.38-0.62 by H-1 NMR or quantitive C-13 NMR and DEPT 135 spectra. These polymers exhibit moderate molecular weights, with broad distributions determined by size exclusion chromatography ( SEC), and possess excellent solubility in a variety of solvents such as N, N- dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, and ethanol, and display glass-transition temperatures (T(g)s) between -2.3 and 53.2 degrees C, determined by DSC measurements.
Resumo:
The synthesis of a novel ABC ternary segregated H-shaped copolymer is described, of which a central poly(ethylene glycol) (PEG) chain is terminated on both sides by polystyrene (PS) and poly(tert-butylacrylate) (PtBA) chains. The synthetic procedure involves functionalization of PEG by 2-bromosuccinic anhydride followed by esterification of 1,6-hexanediol, which gives its ends the bifunctional nature that allows sequential growth of two PS, then two PtBA arms via atom transfer radical polymerization (ATRP). The resulting segregated H-shaped copolymers were characterization by NMR spectroscopy and gel permeation chromatography (GPC). All these copolymers were affirmed to have well-defined structures and narrow molecular weight distributions.
Resumo:
The four AB(2) monomers, N-[3- or 4-bis(4-hydroxyphenyl)toluoyl]-4-chlorophthalimide and N-{3- or 4-[1,1-bis(4-hydroxyphenyl)]ethylphenyl}-4-chlorophthalimides, were prepared and used for synthesis of hyperbranched poly(ether imide)s bearing hydroxyl end groups. These hyperbranched poly(ether imide)s had moderate molecular weights with broad distributions and showed glass-transition temperatures (Tgs) between 177 and 230 degreesC. The thermogravimetric analytic measurement revealed the decomposition temperature at 5% weight-loss temperatures (T-d(5%)) ranging from 240 to 281 degreesC. Analysis using H-1 NMR spectroscopy revealed the four types of hyperbranched poly(ether imide)s to have similar degrees of branching (ca. 60%). These polymers were modified by acylation or nucleophilic substitution reaction at the hydroxyl end groups. The conversion effectiveness depended on the type of modification reaction, modifier, and reaction conditions. The thermal stability and solubility of hyperbranched poly(ether imide)s were improved by the modification of the end groups.
Resumo:
The synthesis and characterization of hyperbranched aromatic poly(ester-imide)s are described. A variety of AB(2) monomers, N-[3- or 4-bis(4-acetoxyphenyl)toluoyl]-4-carboxyl-phthalimide and N-{3- or 4-[1,1-bis(4-acetooxyphenyl)]ethylphenyl}-4-carboxy phthalimides were prepared starting from condensation of nitrobenzaldehydes or nitroacetophenones with phenol and used for synthesis of hyperbranched poly(ester-imide)s containing terminal acetyl groups by transesterification reaction. These hyperbranched poly(ester-imide)s were produced with weight-average molecular weight of up to 6.87 g/mol. Analysis of H-1 NMR and C-13 NMR spectroscopy revealed the structure of the four hyperbranched poly(ester-imide)s. These hyperbranched poly(ester-imide)s exhibited excellent solubility in a variety of solvents such as N,N-dimethylacetamide, dimethyl sulfoxide, and tetrahydrofuran and showed glass-transition temperatures between 217 and 255 degreesC. The thermogravimetric analytic measurement revealed the decomposition temperature at 10% weight-loss temperature (T-d(10)) ranging from 365 to 416 degreesC in nitrogen.
Resumo:
A new compound, (C6H6N3)(7)((PMo12O40)-O-m)(PMo(v)Mo(11)(m)O40) (.) 2CH(3)CH(2)OH (.) 5H(2)O, was synthesized and characterized by means of elemental analyses, IR spectroscopy, H-1 NMR spectroscopy and single crystal X-ray diffraction. This is the first example of benzotriazole-polyoxometalates species. The compound crystallized in a triclinic space group P (1) over bar with a = 1. 8378 (4) nm. b = 1. 9078 (4) nm. c = 2.1037 (4) nm. alpha = 63.41 (3)degrees. beta = 64.31 (3)degrees. gamma = 68.38 (3)degrees. V = 5.803 (2) nm(3). Z = 2. R-1 = 0.0486, wR(2) = 0.1357. The X-ray crystallographic study showed that the crystal structure was constructed by electrostatic interactions and hydrogen bonds between dodecamolybdophosphorate anions and protonated benzotriazole cations. The electrochemical behavior and the reduction of nitrite and hydrogen peroxide clectrocatalyzed by the title compound were studied.
Resumo:
The hexafluorophosphate salts [Fe((C5H4Bu)-Bu-t)(2)]PF6 (1) and [Co((C5H4Bu)-Bu-t)(2)]PF6 (2) crystallize in isotypic structures with centrosymmetric cations which have a staggered (transoid) conformation of the exactly parallel ring Ligands (conformational angle tau = 180 degrees). The tetrachlorocobaltate salt, [CO((C5H4Bu)-Bu-t)(2)](2)CoCl4 (3), contains one almost eclipsed (tau = 140.4 degrees) and one almost staggered (tau = 101.4 degrees) cobaltocenium cation; in both cases, the cyclopentadienyl ring planes are slightly inclined (by alpha = 5.4 degrees and 4.1 degrees, respectively) to give more room to the tert-butyl substituents which are bent away from the metal in all three complexes 1 - 3.
Resumo:
The effect of the amount of the catalyst FeCl3, used during the direct oxidation polymerization, on the structure and properties of the obtained poly(3-dodecylthiophene) (P3DDT) was investigated in this paper. Such measurements as gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, thermal analysis, X-ray diffraction, infrared spectroscopy (FTIR) and ultraviolet-visible (W-vis) spectroscopy were applied. It is found that a suitable addition of FeCl3 can contribute to generate a P3DDT with greater percentage of head-to-tail head-to-tail (HT-HT) linkages, which are generally favored. The reduction of the other linkage defects helps to lengthen conjugation length, thus leading to more orderly chain packing. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The heterobimetallic complexes Cp * Rh(CN Bu-t)(EC5H4)(2)Fe [E = S(2),Se(3), Te(4)] have been synthesized by the reaction of halfsandwich rhodium complex Cp * Rh(CNtBu) Cl-2 with Fe(C5H4ELi)(2). 2THF. Oxidation of 2,3 by AgBF4 to give ferrocenium - type salts [Cp * Rh(CNtBu) (EC5H4)(2)Fe] (+) [BF4] (-) [E = S(5),Se(6)] also occurs readily. The new complexes have been characterized by MS IR, H-1 and C-13 NMR spectroscopy and elemental analysis.
Resumo:
Three title compounds were prepared and the structure of title compound 2 was characterized by IR, H-1 NMR, C-13 NMR, Sn-119 NMR spectroscopy and the crystal structure of compound 2a was determined by X-ray analysis with the final R indices[I >2 sigma (I)] R-1 = 0.0350 and R-2,R-omega = 0.0888. The crystal of compound 2a belongs to triclinic system, space group P1 with a = 1.0598(6) nm, b = 1.307 4(10) nm, c = 1.378 6(10) nm, alpha = 62.666(7)degrees, beta = 72.530(2)degrees, gamma = 80. 680(2)degrees, V = 1.618 0 nm(3), D-x = 1. 444 g (.) cm(-3), Z = 1, F (000) = 728. The bond length of Sn1-O1 is 0. 2076 nm and Sn1 . . . O2 distance is 0.301 3 nm. The coordination about the tin atom can be considered as a distorted tetrahedral. The detail values of H-1 NMR, C-13 NMR, Sn-119 NMR, (2)J(119Sn-1H) and J(119Sn-13C) were obtained. delta (119Sn) = 23.836, (2)J(119Sn-1H) = 88.0 Hz, (1)J(119Sn-13C) = 347.1 Hz, (2)J(119Sn-13C) = 45.6 Hz.
Resumo:
A series of light-emitting poly(p-phenylene vinylene)s with triphenylamine units as hole-transporting moieties in the main chain were synthesized via Wittig condensation in good yields. The newly formed vinylene double bonds possessed a trans configuration, which was confirmed by Fourier transform infrared and NMR spectroscopy. The high glass-transition temperature (83-155 degreesC) and high decomposition temperature (> 300 degreesC) suggested that the resulting copolymers possessed high thermal stability. These copolymers, especially TAAPV1, possessed a high weight-average molecular weight (47,144) and a low polydispersity index (1.55). All the copolymers could be dissolved in common organic solvents, such as tetrahydrofuran (THF), CHCl3, CH2Cl2, and toluene, and exhibited intense photoluminesence in THF (the emission maxima were located from 478 to 535 nm) and in film (from 478 to 578 nm). The low onsets of the oxidation potential (0.6-0.75 V) suggested that the alternating copolymers possessed a good hole-transporting property due to the incorporation of triphenylamine moieties. (C) 2001 John Wiley & Sons, Inc.