120 resultados para NADH Tetrazolium Reductase
Resumo:
应用非损伤性DNA测序技术测定了来自不同国家的长蠹科害虫的线粒体DNA ND4基因的部分序列。在获得的204bp的序列中,5种昆虫的序列变异丰富,多数变异发生在密码子的第3位点上。用PAUP3.1.1数据分析软件构建了5个种的合意简约树。并将实验结果与形态学特征比较分析,探讨5个种及所在属的系统进化。结果表明:双钩异翅长蠹所在的异翅长蠹属分化最早,其次是竹大长蠹所在的大长蠹属、双棘长蠹和黑双棘长蠹所在的双棘长蠹属及红艳长蠹所在的钻木长蠹属。双棘长蠹和黑双棘长蠹隶属同一个属,遗传关系最近,分化最晚,与形态学研究结果相吻合。
Resumo:
In this report, we studied on a homoplasmic T12338C change in mitochondrial DNA (mtDNA), which substituted methionine in the translational initiation codon of the NADH dehydrogenase subunit 5 gene (ND5) with threonine. This nucleotide change was originall
Resumo:
Background: The anti-HIV-1 neutralizing antibody assay is widely used in AIDS vaccine research and other experimental and clinical studies. The vital dye staining method applied in the detection of anti-HIV-1 neutralizing antibody has been used in many laboratories. However, the unknown factor(s) in sera or plasma affected cell growth and caused protection when the tested sera or plasma was continuously maintained in cell culture. In addition, the poor solubility of neutral red in medium (such as RPMI-1640) also limited the use of this assay. Methods: In this study, human T cell line C8166 was used as host cells, and 3-(4,5-Dimethyl-2-thiazolyl)- 2,5-diphenyl-2H-tetrazolium bromide (MTT) instead of neutral red was used as vital dye. In order to avoid the effect of the unknown factor( s), the tested sera or plasma was removed by a washout procedure after initial 3 - 6 h culture in the assay. Result: This new assay eliminated the effect of the tested sera or plasma on cell growth, improved the reliability of detection of anti-HIV-1 neutralizing antibody, and showed excellent agreement with the p24 antigen method. Conclusion: The results suggest that the improved assay is relatively simple, highly duplicable, cost-effective, and well reliable for evaluating anti-HIV-1 neutralizing antibodies from sera or plasma.
Resumo:
由于到达地球表面的紫外线B辐射不断加强,生物生长受到了威胁。UV-B的增强改变了生物体赖以生存的环境,影响了藻类生物生长,抑制了其光合作用。以BG11为培养基,在室内培养的条件是光照强度为60μmol·m-2s-(1昼夜比为12h∶12h),温度为26℃,研究了一氧化氮(NO)在增强UV-B(强度为0.2J·m-2s-1)辐射下的对小球藻的作用。测定了小球藻的硝酸还原酶(NR,nitrate reductase)、亚硝酸还原酶(NiR,nitrite reductase)、谷胱甘肽还原酶(GS,gluta
Resumo:
Oxidative stress response after prolonged exposure to a low dose of microcystins (MCs) was studied in liver, kidney and brain of domestic rabbits. Rabbits were treated with extracted MCs (mainly MC-LR and MC-RR) at a dose of 2 MC-LReq. mu g/kg body weight or saline solution every 24 h for 7 or 14 days. During the exposure of MCs, increase of lipid peroxidation (LPO) levels were detected in all the organs studied, while antioxidant enzymes responded differently among different organs. The enzyme activities Of Superoxide dismutase (SOD). catalase (CAT) and glutathione reductase (GR) in liver decreased in the MCs treated animals. In brain, there were obvious changes in glutathione peroxidase (GPx) and GR, while only CAT was obviously influenced in kidney. Therefore, daily exposure at a lower dosage of MCs, which mimicked a natural route of MCs. could also induce obvious oxidative stress in diverse organs of domestic rabbits. The oxidative stress induced by MCs in brain was as serious as in liver and kidney, suggesting that brain may also be a target of MCs in mammals. And it seems that animals may have more time to metabolize the toxins or to form an adaptive response to reduce the adverse effects when exposed to the low dose of MCs. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study was conducted to investigate time-dependent changes in oxidative enzymes in liver of crucian carp after intraperitoneally injection with extracted microcystins 600 and 150 mu g kg(-1) body weight. The results showed that activities of antioxidant enzymes, including superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase generally exhibited a rapid increase in early phase (1-3 h post injection), but gradually decreased afterwards (12-48 h) compared with the control, with an evident time-dependent effect. These zigzag changes over time contributed a better understanding on oxidative stress caused by microcystins in fish.
Resumo:
Iron is an essential trace element for biological requirements of phytoplankton. Effects of iron on physiological and biochemical characteristics of Microcystis wesenbergii were conducted in this study. Results showed that 0.01 mu M [Fe3+] seriously inhibited growth and chlorophyll synthesis of M. wesenbergii, and induced temporary increase of ATPase activities, however, NR. ACP and ALP activities were restrained by iron limitation. Interestingly, iron addition on day 8 resulted in the gradual restoration of structures and functions of above enzymes and resisted a variety of stresses from iron limitation. M. wesenbergii in 10 mu M [Fe3+] treatment group grew normally. enzymes maintained normal levels, and residual phosphate contents in cultures first sharply decreased, then smoothly as M. wesenbergii has a characteristic of luxury consumption of phosphorus. Above parameters in 100 mu M [Fe3+] treatment group were almost same with those in 10 mu M [Fe3+] treatment group except for NR, ACP and ALP activities. In 100 mu M [Fe3+] treatment group, activities of ACP and ALP had temporary increase because phosphate and ferric iron could form insoluble compound - ferric phosphate (Fe3PO4) through adsorption effect. resulting in lack of bioavailable phosphate in culture media. The experiment suggested that too low or too high iron can affect obviously physiological and biochemical characteristics of M. wesenbergii.
Resumo:
The phytoplankton community in Lake Dianchi (Yunnan Province, Southwestern China) is dominated in April by a bloom of Aphanizomenon, that disappears Suddenly and is displaced by a Microcystis bloom in May. The reasons for the rapid bloom disappearance phenomenon and the temporal variability in the composition of phytoplankton assemblages are poorly understood. Cell growth, ultrastructure and physiological changes were examined in cultures of Aphanizomenon sp. DC01 isolated from Lake Dianchi exposed to different closes of rnicrocystin-RR (MC-RR) produced by the Microcystis bloom. MC-RR concentrations above 100 mu g L-1 markedly inhibited the pigment (chlorophyll-a, phycocyanin) synthesis and caused an increase of soluble carbohydrate and protein contents and nitrate reductase activity of toxin-treated blue-green algae. A drastic. reduction in photochemical efficiency of PSII (Fv/Fm) was also found. Morphological examinationn showed that the Aphanizomenon filaments disintegrated and file cells lysed gradually after 48 h Of toxin exposure. Transmission electron microscopy revealed that cellular inclusions of stressed cells almost leaked out completely and the cell membranes were grossly damaged. These findings demonstrate the allelopathic activity of Microcystis aeruginosa inducing physiological stress and cell death of Aphanizomenon sp. DC01 Although the active concentrations of microcystin were rather high, we propose that microcystin may function as allelopathic Substance due to inhomogeneous toxin concentrations close to Microcystis cells. Hence, it may play a role in species Succession of Aphanizomenon and Microcystis in Lake Dianchi.
Resumo:
Hexabromocyclododecanes (HBCDs) are additive brominated flame retardants mainly used in plastics and textiles. At the present time, these compounds are found in almost all environmental and human samples. In order to evaluate the environmental safety and health risk of HBCDs, the enantiomerically pure alpha-, beta-, and gamma-HBCD were prepared using high performance liquid chromatography (HPLC) on a PM-P-CD column and the cytotoxicities of their enantiomers were evaluated in Hep G2 cells. Results from the 3-(4,5-dimethylthioazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), resazurin reduction and lactate dehydrogenase (LDH) release assays showed a good agreement that the order of cytotoxicity was gamma-HBCD >= beta-HBCD > alpha-HBCD, and that significantly lower cell viability and higher LDH release were observed in all (+)-enantiomers ((+) alpha-, (+) beta- and (+) gamma-HBCD) than the corresponding (-)-forms ((-) alpha-, (-) beta- and (-) gamma-HBCD). Additionally, the formation of reactive oxygen species (ROS) induced by these HBCD enantiomers were detected. The positive correlation between the LDH release and ROS formation demonstrated that the toxic mechanism might be mediated by oxidative damage. These results suggest that environmental and human health risks of HBCDs must be evaluated at the level of individual enantiomers. (C) 2008 Published by Elsevier Ltd.
Resumo:
This study examined the toxic effects of microcystins on mitochondria of liver and heart of rabbit in vivo. Rabbits were injected i.p. with extracted microcystins (mainly MC-RR and -LR) at two doses, 12.5 and 50 MCLReq. mu g/kg bw, and the changes in mitochondria of liver and heart were studied at 1, 3,12, 24 and 48 h after injection. MCs induced damage of mitochondrial morphology and lipid peroxidation in both liver and heart. MCs influenced respiratory activity through inhibiting NADH dehydrogenase and enhancing succinate dehydrogenase (SDH). MCs altered Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of mitochondria and consequently disrupted ionic homeostasis, which might be partly responsible for the loss of mitochondrial membrane potential (MMP). MCs were highly toxic to mitochondria with more serious damage in liver than in heart. Damage of mitochondria showed reduction at 48 h in the low dose group, suggesting that the low dose of MCs might have stimulated a compensatory response in the rabbits. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The genus Sinocyclocheilus is distributed in Yun-Gui Plateau and its surrounding region only, within more than 10 cave species showing different degrees of degeneration of eyes and pigmentation with wonderful adaptations. To present, published morphological and molecular phylogenetic hypotheses of Sinocyclocheilus from prior works are very different and the relationships within the genus are still far from clear. We obtained the sequences of cytochrome b (cyt b) and NADH dehydrogenase subunit 4 (ND4) of 34 species within Sinocyclocheilus, which represent the most dense taxon sampling to date. We performed Bayesian mixed models analyses with this data set. Under this phylogenetic framework, we estimated the divergence times of recovered clades using different methods under relaxed molecular clock. Our phyloegentic results supported the monophyly of Sinocyclocheilus and showed that this genus could be subdivided into 6 major clades. In addition, an earlier finding demonstrating the polyphyletic of cave species and the most basal position of S. jii was corroborated. Relaxed divergence-time estimation suggested that Sinocyclocheilus originated at the late Miocene, about 11 million years ago (Ma), which is older than what have been assumed.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are used extensively as flame-retardants and are ubiquitous in the environment and in wildlife and human tissue. Recent studies have shown that PBDEs induce neurotoxic effects in vivo and apoptosis in vitro. However, the signaling mechanisms responsible for these events are still unclear. In this study, we investigated the action of a commercial mixture of PBDEs (pentabrominated diphenyl ether, DE-71) on a human neuroblastoma cell line, SK-N-SH. A cell viability test showed a dose-dependent increase in lactate dehydrogenase leakage and 3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction. Cell apoptosis was observed through morphological examination, and DNA degradation in the cell cycle and cell apoptosis were demonstrated using flow cytometry and DNA laddering. The formation of reactive oxygen species was not observed, but DE-71 was found to significantly induce caspase-3, -8, and -9 activity, which suggests that apoptosis is not induced by oxidative stress but via a caspase-dependent pathway. We further investigated the intracellular calcium ([Ca2+](i)) levels using flow cytometry and observed an increase in the intracellular Ca2+ concentration with a time-dependent trend. We also found that the N-methyl d-aspartate (NMDA) receptor antagonist MK801 (3 mu M) significantly reduced DE-71-induced cell apoptosis. The results of a Western blotting test demonstrated that DE-71 treatment increases the level of Bax translocation to the mitochondria in a dose-dependent fashion and stimulates the release of cytochrome c (Cyt c) from the mitochondria into the cytoplasm. Overall, our results indicate that DE-71 induces the apoptosis of ([Ca2+](i)) in SK-N-SH cells via Bax insertion, Cyt c release in the mitochondria, and the caspase activation pathway.
Resumo:
Chaetoceros muelleri (Lemn.) was cultured with nitrite (NO2-) or nitrate (NO3-) as the sole nitrogen source and aerated with air or with CO2-enriched air. Cells of C. muelleri excreted into the medium nitrite produced by reduction of nitrate when grown with 100 mu M NaNO3 as nitrogen source. Accordingly, NO2- concentration reached 10.4 mu M after 95 h at the low CO2 condition (aerated with air); while the maximum NO2- concentration was only around 2.0 mu M at the high CO2 condition (aerated with 5% CO2 in air), furthermore, after 30 h it decreased to no more than 1.0 mu M. NO2- was almost assimilated in 80 h when C. muelleri was cultured at the high CO2 condition with 100 mu M NaNO2 as sole nitrogen source. At the high CO2 condition, after 3 h the activity of nitrite reductase was as much as 50% higher than that at the low CO2 condition. It was indicated that enriched CO2 concentration could inhibit nitrite excretion and enhance nitrite assimilation by cells. Therefore, aeration with enriched CO2 might be an effective way to control nitrite content in aquaculture systems.
Resumo:
This study was undertaken to investigate the role of the glutathione-involved detoxifying mechanism in defending the tobacco BY-2 suspension cells against microcystin-RR (MC-RR). Analysis showed that exposure of the cells to different concentrations of MC-RR (0.1, 1 and 10 mu g/mL) for 0-6 days resulted in a time and concentration-dependent decrease in cell viability and increase in reactive oxygen species (ROS) content. Reduced glutathione (GSH) and total glutathione (tGSH) content as well as glutathione reductase (GR), glutathione peroxidase (GPX) and glutathione-S-transferase (GST) activities significantly increased after 3-4 days exposure in the highest two concentration treated groups, while decreased until reaching the control values except for GPX at day 6. Oxidized glutathione (GSSG) content markedly increased compared with control in high concentration MC-RR treated group after 6 days exposure. The GSH/GSSG ratio was much higher than control in 10 mu g/mL MC-RR treated group at day 4, but after 6 days exposure, the ratios in all treated groups were lower than that of the control group.
Resumo:
Microcystins are a kind of cyclic hepatotoxins produced by many cyanobacterial species. Many works have been done concerning, the toxic effects of microcystins on animals and plants. However, the reports about their effects on microbial cells are very limited. In the present paper, Bacillus subtilis (B. subtilis) was used to determine the dose- and time-effect of microcystin-RR, and the results showed that the activity of antioxidant enzymes including superoxide dismutase (SOD) and catalase (CAT) was significantly increased to that of control, when exposed to 5 or 10 mu g/ml microcystin-RR for 1 h. The contents of thiobarbituric acid-reactive sub-stances (TBARS) and glutathione (GSH) as well as glu-tathione reductase (GR) activity were obviously increased only when exposed to 10 mu g/ml microcystin-RR. For the time-effect of microcystin-RR on B. subtilis, the activities of antioxidant enzymes including SOD and CAT as well as GR activity and TBARS, GSH contents in B. subtilis were at first significantly increased, and then subsequently de-creased. These results suggested that microcystin-RR could induce the oxidative stress of B. subtilis for a short period. The antioxidant system protects B. subtilis from oxidative damage.