92 resultados para Modulus of Smoothness


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Notch Izod impact strength of poly(propylene) (PP)/glass bead blends was studied as a function of temperature. The results indicated that the toughness for various blends could undergo a brittle-ductile transition (BDT) with increasing temperature. The BDT temperature (T-BD) decreased with increasing glass bead content. Introducing the interparticle distance (ID) concept into the study, it was found that the critical interparticle distance (IDc) reduced with increasing test temperature correspondingly. The static tensile tests showed that the Young's modulus of the blends decreased slightly first and thereafter increased with increasing glass bead content. However, the yield stress decreased considerably with the increase in glass bead content. Dynamic mechanical analysis (DMA) measurements revealed that the heat-deflection temperature of the PP could be much improved by the incorporation of glass beads. Moreover, the glass transition temperature (T-g) increased obviously with increasing glass beads content. Differential scanning calorimetry (DSC) results implied that the addition of glass beads could change the crystallinity as well as the melting temperature of the PP slightly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanical and thermal properties of glass bead-filled nylon-6 were studied by dynamic mechanical analysis (DMA), tensile testing, Izod impact, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) tests. DMA results showed that the incorporation of glass beads could lead to a substantial increase of the glass-transition temperature (T-g) of the blend, indicating that there existed strong interaction between glass beads and the nylon-6 matrix. Results of further calculation revealed that the average interaction between glass beads and the nylon-6 matrix deceased with increasing glass bead content as a result of the coalescence of glass beads. This conclusion was supported by SEM observations. Impact testing revealed that the notch Izod impact strength of nylon-6/glass bead blends substantially decreased with increasing glass bead content. Moreover, static tensile measurements implied that the Young's modulus of the nylon-6/glass bead blends increased considerably, whereas the tensile strength clearly decreased with increasing glass bead content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Blends of polyamide-6 (PA6) with syndiotactic polystyrene (sPS) were prepared using a series of styrene/glycidyl methacrylate (SG) copolymers as compatibilizers. These copolymers are miscible with sPS, and the epoxide units in SG are capable of reacting with PA6 end groups. These copolymers thus have the potential to form SG-g-PA6 graft copolymers at the PA6/sPS interface during melt processing. This study focuses on the effects of functionality and concentration of the compatibilizer on the morphological, mechanical and crystallization behaviors of the blends.. In general, SG copolymers are effective in reducing the sPS domain size and improving the interfacial adhesion. About 5 wt% glycidyl methacrylate (GMA) is the optimum content in SG copolymer that produces the best compatibilization. Both the strength and modulus of the blend have been improved on addition of the SG copolymers, accompanying a loss in toughness when higher concentration copolymer is added. Incorporation of SG compatibilizers to PA6/sPS blend has little influence on the crystallization behavior of PA6 component but resulted in a steady reduction in intensity of crystallinity peak of sPS and simultaneous crystallization of sPS with PA6 is observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reactive compatibilization of ethylene-propylene copolymer functionalized with allyl (3-isocyanato-4-tolyl) carbamate (TAI) isocyanate (EPM-g-TAI) and polyamide 6 (PA6) was investigated in this paper, FTIR analysis revealed the evidence of a chemical reaction between the end groups of PA6 and EPM-g-TAI. Thermal, rheological, morphological, and mechanical properties of the resultant system were examined, DSC analysis indicated that the crystallization of PA6 in Pa6/EPM-g-TAI blends was inhibited, due to the chemical reaction that occurs at the interface of PA6 and EPM-g-TAI. Rheological measurement showed that complex viscosity and storage modulus of PA6/EPM-g-TAI were both dramatically enhanced compared to those of PA6/EPM at the same blending composition. After examining the morphology of both blending systems, smaller particile sizes, more homogeneous distribution of domains and improved interfacial adhesion between matrix and domains were observed in the compatibilized system. Mechanical properties such as tensile strength. Young's modulus, flexural strength and modulus, as well as notched and un-notched impact strength of PA6/EPM-g-TAI blends were also found to improve gradually with increasing the content of grafted TAI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polypropylene/montmorillonite (PP/MMT) nanocomposites were prepared by in-situ polymerization using a MMT/MgCl2/TiCl4-EB Ziegler-Natta catalyst activated by trietbylaluminum (TEA). The enlarged layer spacing of MMT was confirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components. X-ray photoelectron spectrometry (XPS) analysis proved that TiCl4 was mainly supported on MgCl2 instead of on the surface of MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXD patterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three triblock copolymers of poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weights and one diblock copolymer of poly[styrene-b-(ethylene-co-butylene)] (SEB) were used to compatibilize high density polyethylene/syndiotactic polystyrene (HDPE/sPS, 80/20) blend. Morphology observation showed that phase size of the dispersed sPS particles was significantly reduced on addition of all the four copolymers and the interfacial adhesion between the two phases was dramatically enhanced. Tensile strength of the blends increased at lower copolymer content but decreased with increasing copolymer content. The elongation at break of the blends improved and sharply increased with increments of the copolymers. Drop in modulus of the blend was observed on addition of the rubbery copolymers. The mechanical performance of the modified blends is strikingly dependent not only on the interfacial activity of the copolymers but also on the mechanical properties of the copolymers, particularly at the high copolymer concentration. Addition of compatibilizers to HDPE/sPS blend resulted in a significant reduction in crystallinity of both HDPE and sPS. Measurements of Vicat softening temperature of the HDPE/sPS blends show that heat resistance of HDPE is greatly improved upon incorporation of 20 wt% sPS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The plateau modulus of polyphenylquinoxaline (PPQ-E) films has been obtained by from their dynamic mechanical properties curves. Using these data, the entanglement density of PPQ-E films, 2.37 X 10(26) m(-3) Or 0.39mmol/cm(3),has been estimated. The deformation mechanism of polyphenylquinoxaline (crazing mechanism,or shear yielding mechanism, or both), can be predicted according to entanglement density values. The changes in morphology of PPQ-E films during tensile deformation have been observed by Polarized Light Microscope. The result shows that crazing first appears in the tensile process, then shear yielding appears. It needs to point out that the craze is terminated by micro-shear band and the direction of craze in shear band is also changed,which prevents the craze growth into crack and avoid the failure of material. This result is in accordance with the prediction on the basis of the entanglement density data. The morphology and structure of crazes in PPB-E thin film have been determined by TEM. The craze morphology of PPQ-E is mainly fibril craze consisting of micro-fibrils and micro-voids,the interface between bulk and craze is distinct. Multiply crazes, blunting of craze tip and shear deformation zone are also observed. This result reflects the accordance of entanglement density and the morphology and structure of crazes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single chain polystyrene particles were obtained by dilute solution casting method. The sample with both single chain polystyrene particles and multi-chain (more than 1000 molecular chains) polystyrene particles was obtained by a little more concentrate solution. Force modulation technique showed that single chain polystyrene particles were softer than multichain polystyrene particles. On the other hand, nanoindentation experiments on multi-chain particles and bulk polystyrene manifested that the elastic modulus of multi-chain polystyrene particles was very close to that of bulk polystyrene. Therefore, it was concluded that single chain polystyrene particles were softer than bulk polystyrene,which indicated that the density of intrachain entanglement points in the single chain polystyrene particles was not as large as that of the interchain entanglement points in the bulk state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scanning probe microscopy was used to simultaneously determine the molecular chain structure and intrinsic mechanical properties, including anisotropic elastic modulus and friction, for lamellae of highly oriented high-density polyethylene (HDPE) obtained by the melt-drawn method. The molecular-scale image of the highly oriented lamellae by friction force microscopy (FFM) clearly shows that the molecular chains are aligned parallel to the drawing direction, and the periodicities along and perpendicular to the drawing direction are 0.26 and 0.50 nm, respectively. The results indicate that the exposed planes of the lamellae resulting from the melt-drawn method are (200), which is consistent with results of transmission electron microscopy and electron diffraction. Because of the high degree of anisotropy in the sample, coming from alignment of the molecular chains along the drawing direction, the measured friction force, F, determined by FFM is strongly dependent on the angle, theta, between the scanning direction and the chain axis. The force increases as theta is increased from 0 degrees (i.e., parallel to the chain axis) to 90 degrees (i.e., perpendicular to the chain axis). The structural anisotropy was also found to strongly influence the measurements of the transverse chain modulus of the polymer by the nanoindentation technique. The measured value of 13.8 GPa with transverse modulus was larger than the value 4.3 GPa determined by wide-angle X-ray diffraction, which we attributed to anisotropic deformation of the lamellae during nanoindentation measurements that was not accounted for by the elastic treatment we adopted from Oliver and Pharr. The present approach using scanning probe microscopy has the advantage that direct correlations between the nanostructure, nanotribology, and nanomechanical properties of oriented samples can be determined simultaneously and simply.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic mechanical properties of sulfonated butyl rubber ionomers neutralized with different amine or metallic ion (zinc or barium) and their blends with polypropylene (PP), high-density polyethylene (HDPE), or styrene-butadiene-styrene (SBS) triblock copolymer were studied using viscoelastometry. The results showed that glass transition temperatures of ion pair-containing matrix and ionic domains (T-g1 and T-g2, respectively) of amine-neutralized ionomers were lower than those of ionomers neutralized with metallic ions, and the temperature range of the rubbery plateau on the storage modulus plot for amine-neutralized ionomers was narrower. The modulus of the rubbery plateau for amine-neutralized ionomers was lower than that of ionomers neutralized with zinc or barium ion. With increasing size of the amine, the temperature range for the rubbery plateau decreased, and the height of the loss peak at higher temperature increased. Dynamic mechanical properties of blends of the zinc ionomer with PP or HDPE showed that, with decreasing ionomer content, the T-m of PP or HDPE increased and T-g1 decreased, whereas T-g2 or the upper loss peak temperature changed only slightly. The T-g1 for the blend with SBS also decreased with decreasing ionomer content. The decrease of T-g1 is attributed to the enhanced compatibilization of the matrix of the ionomer-containing ion pairs with amorphous regions of PP or HDPE or the continuous phase of SBS due to the formation of thermoplastic interpenetrating polymer networks by ionic domains and crystalline or glassy domains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of the elastomer stiffness on brittle-tough transition in elastomer toughening thermoplastics was quantitatively studied. A correlation between brittle-tough transition temperature and the elastomer stiffness was obtained. The calculation from this correlation showed that the brittle-tough transition temperature (T-bt) Of elastomer toughening thermoplastics slowly increased up to one tenth of the modulus of matrix, thereafter it increased rapidly with increasing the modulus of elastomer. The results indicated that the modulus of the elastomer must be one-tenth or less of that of the matrix in order to be effective at low temperature. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The compatibilizing effect and mechanism of compatibilization of the diblock copolymer polystyrene-block-poly(4-vinylpyridine) P(S-b-4VPy) on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)/chlorinated polyethylene (CPE) were studied by means of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), mechanical properties and FTIR measurements. The block copolymer was synthesized by sequential anionic polymerization and melt-blended with PPO and CPE. The results show that the P(S-b-4VPy) added acts as an effective compatibilizer, located at the interface between the PPO and the CPE phase, reducing the interfacial tension, and improving the interfacial adhesion. The tensile strength and modulus of all blends increase with P(S-b-4VPy) content, whereas the elongation at break increases for PPO-rich blends, but decreases for CPE-rich blends. The polystyrene block of the diblock copolymer is compatible with PPO, and the poly(4-vinylpyridine) block and CPE are partially miscible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effect of carbon black (CB) filled low density polyethylene (LDPE) composites was studied using electrical resistivity spectra, DSC, tensile mechanical analysis (TMA) and small-angle X-ray scattering (SAXS) techniques. The three LDPEs used have a similar crystallinity and different melting index (MI). The experimental results indicate that the CB has no significant effect on the crystallinity and the long spacing of crystalline domains of LDPE. Based upon the TMA and dynamic elastic modulus spectra, it can be concluded that the PTC effect is related to the thermal expansion of the polymer matrix, and the NTC effect is caused by a decrease of the elastic modulus of the polymer at high temperatures. The NTC effect can be reduced by enhancing either the elastic modulus or the interaction between carbon black and matrix. (C) 1997 Elsevier Science Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.