86 resultados para Model knowledge conversion of Nonaka
Resumo:
Detailed analysis of some difficult aspects has been made from modeling the platemovement. A new method of using differential density of material (instead of differentialtemperature) has been developed in the experiments. The effect of convection of mantleon the plate movement has been studied using a centrifugal technique, and a patternshowing the recurrence of the plate movement has been successfully obtained. In this paper, a criterion De=Dm is presented for the similarity of the model to thecounterpart of the original mantle. According to the criterion, what happens in the modelin a span of ten minutes suggests a process of the "original model" going on in geologi-cal time of three million years.
Resumo:
Thermal cracking of China No.3 aviation kerosene was studied experimentally and analytically under supercritical conditions relevant to regenerative cooling system for Mach-6 scramjet applications. A two-stage heated tube system with cracked products collection/analysis was used and it can achieve a fuel temperature range of 700-1100 K, a pressure range of 3.5-4.5 MPa and a residence time of approximately 0.5-1.3 s. Compositions of the cracked gaseous products and mass flow rate of the kerosene flow at varied temperatures and pressures were obtained experimentally. A one-step lumped model was developed with the cracked mixtures grouped into three categories: unreacted kerosene, gaseous products and residuals including liquid products and carbon deposits. Based on the model, fuel conversion on the mass basis, the reaction rate and the residence time were estimated as functions of temperature. Meanwhile, a sonic nozzle was used for the control of the mass flow rate of the cracked kerosene, and correlation of the mass flow rate gives a good agreement with the measurements.
Resumo:
A dynamic model for the ice-induced vibration (IIV) of structures is developed in the present study. Ice properties have been taken into account, such as the discrete failure, the dependence of the crushing strength on the ice velocity, and the randomness of ice failure. The most important prediction of the model is to capture the resonant frequency lock-in, which is analog to that in the vortex-induced vibration. Based on the model, the mechanism of resonant IIV is discussed. It is found that the dependence of the ice crushing strength on the ice velocity plays an important role in the resonant frequency lock-in of IIV. In addition, an intermittent stochastic resonant vibration is simulated from the model. These predictions are supported by the laboratory and field observations reported. The present model is more productive than the previous models of IIV.
Resumo:
This paper reports on the successful preparation and a detailed study on the up-conversion properties of Er3+ -doped TeO2-ZnO-PbCl2 oxylialide tellurite glasses. Three intense emissions centered at around 527, 549 and 666 nm have been clearly observed under 977 nm excitation and the involved mechanisms have been explained. The green emissions centered at 527 and 549 nin are due to the H-2(11/2 ->) I-4(15/2) and S-4(3/2) -> I-4(15/2) transitions, and the red up-conversion emission centered at 666 nm is associated with the F-4(9/2) -> I-4(15/2) transitions of Er3+ ions, respectively. The quadratic dependence of fluorescence on excitation laser power confirm that two-photons contribute to up-conversion of the green-red emissions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The up-conversion luminescence of Yb3+-doped yttriurn lanthanum oxide transparent ceramic was investigated. It was ascribed to cooperative luminescence originated from the coupled states of the Yb3+ ion pairs. The proper doping of La2O3 can remove the cooperative luminescence of Yb3+ ion. But excessive La2O3 (at least 10 at.%) the cooperative up-conversion of Yb3+:Y2O3 is obtained again, and the intensity of up-conversion luminescence strengthens with the increase of La2O3 content. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The evolutionary relationships of species of Danio and the monophyly and phylogenetic placement of the genus within the family Cyprinidae and subfamily Rasborinae provide fundamentally important phyloinformatics necessary for direct evaluations of an array of pertinent questions in modern comparative biology. Although the genus Danio is not one of the most diverse within the family, Danio rerio is one of the most important model species in biology. Many investigations have used this species or presumed close relatives to address specific questions that have lasting impact on the hypothesis and theory of development in vertebrates. Largely lacking from this approach has been a holistic picture of the exact phylogenetic or evolutionary relationships of this species and its close relatives. One thing that has been learned over the previous century is that many organismal attributes (e.g., developmental pathways, ecologies, behaviors, speciation) are historically constrained and their origins and functions are best explained via a phylogenetic approach. Herein, we provide a molecular evaluation of the phylogenetic placement of the model species Danio rerio within the genus Danio and among hypothesized closely related species and genera. Our analysis is derived from data using two nuclear genes (RAG1, rhodopsin) and five mitochondrial genes (ND4, ND4L, ND5, COI, cyt b) evaluated using parsimony, maximum likelihood, and Bayesian analyses. The family Cyprinidae is resolved as monophyletic but the subfamily Rasborinae (priority over Danioinae) is an unnatural assemblage. Danio is identified as a monophyletic group sister to a clade inclusive of the genera Chela, Microrasbora, Devario, and Inlecypris, not Devario nor Esomus as hypothesized in previous studies. Danio rerio is sister to D. kyathit among the species of Danio evaluated in this analysis. Microrasbora and Rasbora are non-monophyletic assemblages; however, Boraras is monophyletic.
Resumo:
The mechanism of hole charge transfer in DNA of various lengths and sequences is investigated based on a partially coherent tunneling theory (Zhang et al., J Chem Phys 117:4578, 2002), where the effects of phase-breaking in adenine-thymine and guanine-cytosine base pairs are treated on equal foot. This work aims at providing a self-consistent microscopic interpretation for rate experiments on various DNA systems. We will also clarify the condition under which the simple superexchange-mediated-hopping picture is valid, and make some comments on the further development of present theory.
Resumo:
The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper. Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.
Resumo:
Motivated by experiments on liquid-crystal films, we study the development of specific heat anomaly of finite layer system. With the VCE method, we introduce the strong surface interaction into the layered XY model and get the results of the forth-order analytical expansion. The results show that when the strong surface interaction becomes strong enough, the order trend defeats the quantum noise and the specific heat peak moves abnormally to the high temperature with the number of layers decreasing.
Resumo:
High amounts of acid compounds in bio-oil not only lead to the deleterious properties such as corrosiveness and high acidity, but also set up many obstacles to its wide applications. By hydrotreating the bio-oil under mild conditions, some carboxylic acid compounds could be converted to alcohols which would esterify with the unconverted acids in the bio-oil to produce esters. The properties of the bio-oil could be improved by this method. In the paper, the raw bio-oil was produced by vacuum pyrolysis of pine sawdust. The optimal production conditions were investigated. A series of nickel-based catalysts were prepared. Their catalytic activities were evaluated by upgrading of model compound (glacial acetic acid). Results showed that the reduced Mo-10Ni/gamma-Al2O3 catalyst had the highest activity with the acetic acid conversion of 33.2%. Upgrading of the raw bio-oil was investigated over reduced Mo-10Ni/gamma-Al2O3 catalyst. After the upgrading process, the pH value of the bio-oil increased from 2.16 to 2.84. The water content increased from 46.2 wt.% to 58.99 wt.%. The H element content in the bio-oil increased from 6.61 wt.% to 6.93 wt.%. The dynamic viscosity decreased a little. The results of GC-MS spectrometry analysis showed that the ester compounds in the upgraded bio-oil increased by 3 times. it is possible to improve the properties of bio-oil by hydrotreating and esterifying carboxyl group compounds in the bio-oil.
Resumo:
The basic idea of a defect model of photoconversion by an oxygen impurity in semi-insulating GaAs, proposed in an earlier paper, is described in a systematic way. All experiments related to this defect, including high-resolution spectroscopic measurements, piezospectroscopic study, and recent measurements on electronic energy levels, are explained on the basis of this defect model. The predictions of the model are in good agreement with the experiments. A special negative-U mechanism in this defect is discussed in detail with an emphasis on the stability of the charge states. The theoretical basis of using a self-consistent bond-orbital model in the calculation is also given.
Resumo:
The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6 * 6 Luttinger-Kohn model. The effect of the number and period of plane-waves used for expansion on the stability of energy eigenvalues is examined. For practical calculation, it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.