50 resultados para Mobile radio stations
Resumo:
首先给出了一种通过融合多个超声波传感器和一台激光全局定位系统的数据建立机器人环境地图的方法 ,并在此基础上 ,首次提出了机器人在非结构环境下识别障碍物的一种新方法 ,即基于障碍物群的方法 .该方法的最大特点在于它可以更加简洁、有效地提取和描述机器人的环境特征 ,这对于较好地实现机器人的导航、避障 ,提高系统的自主性和实时性是至关重要的 .大量的实验结果表明了该方法的有效性 .
Resumo:
本文考虑了由2个全方位移动机器人组成的混合动力学系统的协调拟镇定问题.利用机器人位置之间的向量与机器人目标之间向量的内积,设计了多步拟镇定律,该控制律能够在避碰后按指数速率运动到目标点,且在整个过程中两机器人之间的距离不小于避碰的安全距离.最后对2个全方位移动机器人进行了仿真,验证了所给方法的有效性。
Resumo:
In this dissertation, we investigated two types of traveling ionospheric disturbances (TIDs)/gravity waves (GWs) triggered separately by auroral energy input during super geomagnetic storms and solar terminator (ST) under quiet geomagnetic conditions (kp<3+) using TEC measurements from the global network of GPS receivers. Research into the generation and propagation of TIDs/GWs during storms greatly enhance our understandings on the evolution processes of energy transportation from the high-latitude’s magnetosphere to the low-latitude ionosphere and the conjugated effect of TIDs propagation between the northern and southern hemispheres. Our results revealed that the conjugacy of propagation direction between the northern and southern hemispheres was subject to the influence of Coriolis force. We also figure out the evolution processes of ionospheric disturbances at the global scale. These are important topics that had not been well addressed previously. In addition, we also obtained thee wave structures of medium scale TIDs excited by the solar terminator (ST) moving over the northern America and physical mechanisms involved. Our observations confirm that the ST is a stable and repetitive source of ionospheric wave disturbances and the evidence of solar terminator generated disturbances has been demonstrated experimentally via the GPS TEC measurement. The main researches and results of this dissertation are as follows. First, the global traveling ionospheric disturbances (TIDs) during the drastic magnetic storms of October 29–31, 2003 were analyzed using the Global Position System (GPS) total electron content (TEC) data observed in the Asian-Australian, European and North American sectors. We collected the most comprehensive set of the TEC data from more than 900 GPS stations on the International GNSS Services (IGS) website and introduce here a strategy that combines polynomial fitting and multi-channel maximum entropy spectral analysis to obtain TID parameters. Moreover, in collaboration with my thesis advisor, I have developed an imaging technique of 2-dimensional map of TIDs structures to obtain spatial and temporal maps of large scale traveling ionospheric disturbances (LSTIDs). The clear structures of TEC perturbations map during the passage of TIDs were displayed. The results of our study are summarized as follows: (1) Large-scale TIDs (LSTIDs) and medium-scale TIDs (MSTIDs) were detected in all three sectors after the sudden commencement (SC) of the magnetic storm, and their features showed longitudinal and latitudinal dependences. The duration of TIDs was longer at higher latitudes than at middle latitudes, with a maximum of about 16 h. The TEC variation amplitude of LSTIDs was larger in the North American sector than in the two other sectors. At the lower latitudes, the ionospheric perturbations were more complicated, and their duration and amplitude were relatively longer and larger. (2) The periods and phase speeds of TIDs were different in these three sectors. In Europe, the TIDs propagated southward; in North America and Asia, the TIDs propagated southwestward; in the near-equator region, the disturbances propagated with the azimuth (the angle of the propagation direction of the LSTIDs measured clockwise from due north with 0°) of 210° showing the influence of Coriolis force; in the Southern Hemisphere, the LSTIDs propagated conjugatedly northwestward. Both the southwestward and northeastward propagating LSTIDs are found in the equatorial region. These results mean that the Coriolis effect cannot be ignored for the wave propagation of LSTIDs and that the propagation direction is correlated with the polar magnetic activity. (3) The day (day of year: 301) before the SC (sudden commencement) of magnetic storm, we observed a sudden TEC skip disturbances (±10 TECU). It should be a response for the high flux of proton during the solar flare event, but not the magnetic storms. Next, the most comprehensive and dense GPS network’s data from North-America region were used in this paper to analyze the medium scale traveling ionospheric disturbances (MSTIDs) which were generated by the moving solar terminator during the quiet days in 2005. We applied the multi-channel maximum entropy spectral analysis to calculated TID parameters, and found that the occurrence of ST-MSTIDs depends on the seasonal variations. The results of our study are summarized as follows: (1) MSTIDs stimulated by the moving ST (ST-MSTIDs) are detected at mid-latitudes after the passage of the solar terminator with the life time of 2~3 hours and the variation amplitude of 0.2~0.8 TECU. Spectral analysis indicated that the horizontal wavelength, average period, horizontal phase velocity of the MSTIDs are around 300±150 km,150±80 m/s and 25±15 min, respectively. In addition, ST-MSTIDs have wave fronts elongating the moving ST direction and almost parallel to ST. (2) The statistical results demonstrate that the dusk MSTIDs stimulated by ST is more obvious than the dawn MSTIDs in summer. On the contrary, the more-pronounced dawn MSTIDs occurs in winter. (3) Further analysis indicates that the seasonal variations of ST-MSTIDs occurrence frequency are most probably related to the seasonal differences of the variations of EUV flux in the ionosphere region and recombination process during sunrise and sunset period at mid-latitudes. Statistical study of occurrence characteristics of TIDs using the GPS network in North-American and European during solar maximum, In conclusion, statistical studies of the propagation characteristics of TIDs, which excited by the two common origins including geomagnetic storms and moving solar terminator, were involved with global GPS TEC databasein this thesis. We employed the multichannel maximum entropy spectral analysis method to diagnose the characteristics of propagation and evolvement of ionospheric disturbances, also, the characteristics of their regional distribution and climatological variations were revealed by the statistic analysis. The results of these studies can improve our knowledge about the energy transfer in the solar-terrestrial system and the coupling process between upper and lower atmosphere (thermosphere-ionosphere-mesosphere). On the other hand, our results of the investigation on TIDs generated by particular linear origin such as ST are important for developing ionospheric irregularity physics and modeling the transionosphere radio wave propagation. Besides, the GPS TEC representation of the ST-generated ionospheric structure suggests a better possibility for investigating this phenomenon. Subsequently, there are scientific meaning of the result of this dissertation to deeply discuss the energy transfer and coupling in the ionosphere, as well as realistic value to space weather forecast in the ionosphere region.
Resumo:
The ionospheric parameter M(3000)F2 (the so-called transmission factor or the propagation factor) is important not only in practical applications such as frequency planning for radio-communication but also in ionospheric modeling. This parameter is strongly anti-correlated with the ionospheric F2-layer peak height hmF2,a parameter often used as a key anchor point in some widely used empirical models of the ionospheric electron density profile (e.g., in IRI and NeQuick models). Since hmF2 is not easy to obtain from measurements and M(3000)F2 can be routinely scaled from ionograms recorded by ionosonde/digisonde stations distributed globally and its data has been accumulated for a long history, usually the value of hmF2 is calculated from M(3000)F2 using the empirical formula connecting them. In practice, CCIR M(3000)F2 model is widely used to obtain M(3000)F2 value. However, recently some authors found that the CCIR M(3000)F2 model has remarkable discrepancies with the measured M(3000)F2, especially in low-latitude and equatorial regions. For this reason, the International Reference Ionosphere (IRI) research community proposes to improve or update the currently used CCIR M(3000)F2 model. Any efforts toward the improvement and updating of the current M(3000)F2 model or newly development of a global hmF2 model are encouraged. In this dissertation, an effort is made to construct the empirical models of M(3000)F2 and hmF2 based on the empirical orthogonal function (EOF) analysis combined with regression analysis method. The main results are as follows: 1. A single station model is constructed using monthly median hourly values of M(3000)F2 data observed at Wuhan Ionospheric Observatory during the years of 1957–1991 and compared with the IRI model. The result shows that EOF method is possible to use only a few orders of EOF components to represent most of the variance of the original data set. It is a powerful method for ionospheric modeling. 2. Using the values of M(3000)F2 observed by ionosondes distributed globally, data at grids uniformly distributed globally were obtained by using the Kriging interpolation method. Then the gridded data were decomposed into EOF components using two different coordinates: (1) geographical longitude and latitude; (2) modified dip (Modip) and local time. Based on the EOF decompositions of the gridded data under these two coordinates systems, two types of the global M(3000)F2 model are constructed. Statistical analysis showed that the two types of the constructed M(3000)F2 model have better agreement with the observational M(3000)F2 than the M(3000)F2 model currently used by IRI. The constructed models can represent the global variations of M(3000)F2 better. 3. The hmF2 data used to construct the hmF2 model were converted from the observed M(3000)F2 based on the empirical formula connecting them. We also constructed two types of the global hmF2 model using the similar method of modeling M(3000)F2. Statistical analysis showed that the prediction of our models is more accurate than the model of IRI. This demonstrated that using EOF analysis method to construct global model of hmF2 directly is feasible. The results in this thesis indicate that the modeling technique based on EOF expansion combined with regression analysis is very promising when used to construct the global models of M(3000)F2 and hmF2. It is worthwhile to investigate further and has the potential to be used to the global modeling of other ionospheric parameters.