75 resultados para Milk-clotting enzyme
Resumo:
An enzyme responsive nanoparticle system that uses a DNA-gold nanoparticle (AuNP) assembly as the substrate has been developed for the simple, sensitive, and universal monitoring of restriction endonucleases in real time. This new assay takes advantage of the palindromic recognition sequence of the restriction nucleases and the unique optical properties of AuNPs and is simpler than the procedure previously described by by Xu et al. (Angew. Chem. Int. Ed. Engl. 2007, 46, 3468-3470). Because it involves only one type of ssDNA modified AuNPs, this assay can be directed toward most of the endonucleases by simply changing the recognition sequence found within the linker DNA. In addition, the endonuclease activity could be quantitatively analyzed by the value of the reciprocal of hydrolysis half time (t(1/2)(-1). Furthermore, our new design could also be applied to the assay of methyltransferase activity since the methylation of DNA inhibits its cleavage by the corresponding restriction endonuclease, and thus, this new methodology can be easily adapted to high-throughput screening of methyltransferase inhibitors.
Resumo:
Capillary electrophoresis with electrochemiluminescene detection was used to characterize procaine hydrolysis as a probe for butyrylcholinesterase by in vitro procaine metabolism in plasma with butyrylcholinesterase acting as bioscavenger. Procaine and its metabolite N,N-diethylethanolamine were separated at 16 kV and then detected at 1.25 V in the presence of 5.0 mM Ru(bpy)(3)(2+), with the detection limits of 2.4 x 10(-7) and 2.0 x 10(-8) mol/L (S/N=3), respectively. The Michaelis constant K-m value was 1.73 x 10(-4) mol/L and the maximum velocity V-max was 1.62 x 10(-6) mol/L/min. Acetylcholine bromide and choline chloride presented inhibition effects on the enzymatic cleavage of procaine, with the 50% inhibition concentration (IC50) of 6.24 x 10(-3) and 2.94 x 10(-4) mol/L.
Resumo:
Improvement of the sensitivity of electrochemical sandwich enzyme immunoassay has been achieved by electrodepositing redox polymer on screen-printed carbon electrode surface, on which the sandwich complex was formed.
Resumo:
Hollow porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate)(HEMA-co-EDMA) spheres were prepared by emulsifier-free emulsion polymerization, swelling, seed emulsion polymerization and extraction. Then the spheres activated with 2,4,6-trichloro-1,3,5-triazine were functioned with adipohydrazide (AH). After periodate oxidation of its carbohydrate moieties, horseradish peroxidase was immobilized on the hydrazide-functionalized hollow porous poly(HEMA-co-EDMA) spheres. The amount of immobilized enzyme was up to 43.4 mu g of enzyme/g of support. Moreover, the immobilized horseradish peroxidase exhibited high activity and good stability.
Resumo:
An amperometric biosensor for monitoring phenols in the organic phase was constructed by the silica sol-gel immobilization of tyrosinase on a glassy carbon electrode. The organic-inorganic hybrid materials with different sol-gel precursors and polymers were optimized, and the experimental conditions, such as the effect of the solvent, operational potential and enzyme loading were explored for the optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 18 s, and the trend in the sensitivity of different phenols is as follows: catechol > phenol >p-cresol. In addition, the apparent Michaelis-Menten constants (K-m(app)) and the stability of the enzyme electrode were discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A new type of organic-inorganic composite material was prepared by sol-gel method, and a peroxidase biosensor was fabricated by simply dropping sor-gel-peroxidase mixture onto glassy carbon electrode surface. The sol-gel composite film and enzyme membrane were characterized by Fourier-transform infrared (FT-IR) spectroscopy and EQCM, the electrochemical behavior of the biosensor was studied with potassium hexacyanoferrate(II) as a mediator, and the effects of pH and operating potential were explored for optimum analytical performance by using amperometric method. The response time of the biosensor was about 10 s; the linear range was up to 3.4 mM with a detection limit of 5 x 10(-7) M. The sensor also exhibited high sensitivity (15 mu A mM(-1)) and good long-term stability. In addition, the performance of the biosensor was investigated using flow injection analysis (FIA), and the determination of hydrogen peroxide in real samples was discussed. (C)2000 Elsevier Science B.V. All rights reserved.
Resumo:
A novel amperometric biosensor for the detection of hydrogen peroxide was described. The biosensor was constructed by electrodepositing HRP/PPy membrane on the surface of ferrocenecarboxylic acid mediated sol-gel derived composite carbon electrode. The biosensor gave response to hydrogen peroxide in a few seconds with detection limit of 5.0 x 10(-5) M (based on signal:noise = 3). Linear range was upto 0.2 mM. The biosensor exhibited a good stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to analyze two enzymes, phospholipase AZ and fibrinolytic enzyme isolated from Chinese Agkistrodon blomhoffii Ussurensis venom. Using sinapinic acid as the matrix, positive ion mass spectra of the enzymes were obtained, In addition to the dominant protein [M+H](+) ions, multimeric and multiply charged ions were also observed in the mass spectra, The higher the concentration of the enzymes, the more multiply charged polymer and multimeric ions were detected, Our results indicate that MALDI-TOFMS can provide a rapid and accurate method for molecular weight determination of snake venom enzymes, Mass accuracies of 0.1 and 0.3 % were achieved by analysis of highly dialyzed phospholipase A2 and fibrinolytic enzyme, and these results are much better than those obtained using sodium dodecyl sulfate-palyacrylamide gel electrophoresis. MALDI-TOFMS thus provides a reliable method to determine the purity and molecular weight of these enzymes, which are of potential use as therapeutants, Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
A dimethylformamide-polyhydroxyl cellulose organo-hydrogel has been prepared, and its applications for enzyme immobilization in construction of organic phase biosensors have been exploited. With horseradish peroxidase, tyrosinase, and bilirubin oxidase immobilized in the organohydrogel, enzyme electrodes can be operated in various situations, including aqueous buffer, oil/water mixtures, and anhydrous organic solvents, and even in dimethylformamide, to determine analytes of different solubilities, e.g., organic peroxides, phenolic compounds and bilirubin. Biosensing has no restrictions in terms of measuring media and solubilities of analytes.
Resumo:
A new immobilization material and an immobilization method for a glucose sensor with HEFc (hydroxyethylferrocene) as mediator is described. In the course of three months, the enzyme electrode shows almost no deterioration in its response characteristics. The response time is less than 30 s. The electrode has a wide linear range up to 10 mmol l(-1) with good repeatability. The kinetic parameters have also been calculated.
Resumo:
A mediatorless horseradish peroxidase (HRP) enzyme electrode operated in nonaqueous media is constructed by cryohydrogel immobilization.