316 resultados para Mesoporous Nanocrystalline Zirconia
Resumo:
The nanocrystalline (nc) formation was studied in cobalt (a mixture of c (hexagonal close packed) and gamma (face-centered cubic) phases) subjected to surface mechanical attrition treatment. Electron microscopy revealed the operation of {10(1) over bar 0}< 11(2) over bar 0 > prismatic and {0001}< 11(2) over bar 0 > basal slip in the E phase, leading to the successive subdivision of grains to nanoscale. In particular, the dislocation splitting into the stacking faults was observed to occur in ultrafine and nc grains. By contrast, the planar dislocation arrays, twins and martensites were evidenced in the gamma phase. The strain-induced gamma ->epsilon martensitic transformation was found to progress continuously in ultrafine and nc grains as the strain increased. The nc formation in the gamma phase was interpreted in terms of the martensitic transformation and twinning.
Resumo:
Deformation twinning is observed upon large plastic deformation in nanocrystalline (nc) Ni by transmission electron microscopy examinations. New and compelling evidence has been obtained for several twinning mechanisms that operate in nc grains, with the gain boundary emission of partial dislocations determined as the most proficient. Deformation twinning in nc Ni is discussed in comparison with molecular dynamics simulation results, based on generalized planar fault energy curves.
Resumo:
The mechanism of fatigue crack nucleation for nanocrystalline (nc) nickel was experimentally investigated in this paper. The samples of electrodeposited ne nickel were loaded cyclically by using a three point bending instrument at first. Then, atomic force microscopy (AFM) was used to scanning the sample surface after fatigue testing. The results indicated that, after fatigue testing, there are vortex-like cells with an average size of 108nm appeared along the crack on nc nickel sample. And, the roughness of sample surface increased with the maximum stress at the surface.
Resumo:
Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.
Resumo:
A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60A degrees full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.
Resumo:
The cyclic deformation behavior Of ultrafine-grained (UFG) Ni samples synthesized by the electrodeposition method was studied. Different from those made by severely plastic deformation, the UFG samples used in this study are characterized by large-angle grain boundaries. Behaviors from nanocrystalline Ni and coarse-grained Ni samples were compared with that Of Ultrafine-grained Ni. With in situ neutron diffraction. unusual evolutions of residual lattice strains as well as cyclic hardening and softening behavior were demonstrated during the cyclic deformation. The microstructural changes investigated by TEM are discussed with respect to the unusual lattice strain and cyclic hardening/softening. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Low strain hardening has hitherto been considered an intrinsic behavior for most nanocrystalline (NC) metals, due to their perceived inability to accumulate dislocations. In this Letter, we show strong strain hardening in NC nickel with a grain size of 20 nm under large plastic strains. Contrary to common belief, we have observed significant dislocation accumulation in the grain interior. This is enabled primarily by Lomer-Cottrell locks, which pin the lock-forming dislocations and obstruct islocation. motion. These observations may help with developing strong and ductile NC metals and alloys.
Resumo:
Most deformation twins in nanocrystalline face-centered cubic fcc metals have been observed to form from grain boundaries. The growth of such twins requires the emission of Shockley partials from the grain boundary on successive slip planes. However, it is statistically improbable for a partial to exist on every slip plane. Here we propose a dislocation reaction and cross-slip mechanism on the grain boundary that would supply a partial on every successive slip plane for twin growth.This mechanism can also produce a twin with macrostrain smaller than that caused by a conventional twin.
Resumo:
Deformation twins are often observed to meet each other to form multi-fold twins in nanostructured face-centered cubic (fcc) metals.Here we propose two types of mechanism for the nucleation and growth of four different single and multiple twins. These mechanisms provide continuous generation of twinning partials for the growth of the twins after ucleation. A relatively high stress or high strain rate is needed to activate these mechanisms, making them more prevalent in nanocrystalline materials than in their coarse-grained counterparts.Experimental observations that support the proposed mechanisms are presented.
Resumo:
Deformation twinning has been observed in room-temperature rolled nanocrystalline Ni. The growth of the deformation twins via the emission of partial dislocations from a grain boundary has been examined in detail. Partial dislocations on neighboring slip planes may migrate for different distances and then remain in the grain interior, leading to the formation of a steplike twin boundary TB . With continued twin growth, the TBs become gradually distorted and lose their coherent character due to accumulated high stresses. Moreover, we propose that microtwins may form near such TBs due to the emission of partial dislocations from the TB.
Resumo:
The optical properties of zirconia films doped with rhodamine 6G and oxazine 725 by the sol-gel process were investigated using spectroscopic ellipsometry (SE). Accurate refractive index n and the extinction coefficient k were determined using a three-oscillator classical Lorentz model in the wavelength range of 300-800 nm. The derived refractive index of dye-doped films exhibited anomalous dispersion in the absorption region. Wavelength tunable output lasing action yellow and near-infrared wavelength region was achieved by DFB configuration using zirconia films doped with R6G and oxazine 725. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The zirconia-titania-ORMOSIL waveguide thin films with considerable optical quality were prepared by the sol-gel process. The refractive index (n) and the extinction coefficient (k) were determined by a scanning ellipsometer. Wavelength tunable output of distributed feedback waveguide lasing was demonstrated in Rhodamine 6G doped ZrO2 TiO2-ORMOSIL thin films by varying the temperature, and about 5.5 nm wavelength tuning range was achieved around the emission wavelength of 599 nm. The thermal-optic coefficient (dn/dT) of the active ZrO2-TiO2-ORMOSIL films was deduced. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline La0.8Pb0.2FeO3 has been prepared by the sol-gel method. XRD patterns show that the nanocrystalline La0.8Pb0.2FeO3 is a perovskite phase with the orthorhombic structure and its mean crystallite size is about 19 nm. The influence of Pb ions which replaced the La ions on A-sites can be directly observed from the electrical and sensing properties to H-2 gas. The conductance of La0.8Pb0.2FeO3-based sensor is considerably higher than that of LaFeO3-based sensor, and Pb-doping can enhance the sensitivity to H2 gas. An empirical relationship of R = KCH2alpha with alpha = 0.668 was obtained.
Resumo:
EU3+ -doped Y3Al5O12 (YAG:Eu3+) phosphors were synthesized by a facile sol-gel combustion method. In this process, citric acid traps the constituent cations and reduces the diffusion length of the precursors. YAG phase is obtained through sintering at 900 degrees C for 2h. There were no intermediate phases such as YAlO3 (YAP) and Y4Al2O9 (YAM) observed. The charge transfer band of nanocrystalline phosphors shows a shift toward the high-energy side, compared with that of amorphous ones due to lower covalency of Eu-O bond for nanocrystalline phosphors. The higher concentration quenching in YAG:EU3+ nanophosphors may be caused by the confinement effect on resonant energy transfer of nanocrystalline. It also indicates that the sol-gel combustion synthesis method provides a good distribution of Eu3+ activators in YAG host. (c) 2005 Elsevier B.V. All rights reserved.