79 resultados para Maple Molecular Mechanics Water
Resumo:
The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.
Resumo:
A linear spatio-temporal stability analysis is conducted for the ice growth under a falling water film along an inclined ice plane. The full system of linear stability equations is solved by using the Chebyshev collocation method. By plotting the boundary curve between the linear absolute and convective instabilities (AI/CI) of the ice mode in the parameter plane of the Reynolds number and incline angle, it is found that the linear absolute instability exists and occurs above a minimum Reynolds number and below a maximum inclined angle. Furthermore, by plotting the critical Reynolds number curves with respect to the inclined angle for the downstream and upstream branches, the convectively unstable region is determined and divided into three parts, one of which has both downstream and upstream convectively unstable wavepackets and the other two have only downstream or upstream convectively unstable wavepacket. Finally, the effect of the Stefan number and the thickness of the ice layer on the AI/CI boundary curve is investigated.
Sulfonated poly(arylene-co-imide)s as water stable proton exchange membrane materials for fuel cells
Resumo:
A novel sulfonated poly(arylene-co-imide)s were synthesized by Ni(0) catalytic copolymerization of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and naphthalimide dichloride monomer. The synthesized copolymers with the - SO3H group on the side-chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. Because of the introduction of electron donating phenoxy groups into naphthalimide moieties, the hydrolysis of the imide rings was depressed. The resulting copolymers exhibited excellent water stability. The copolymer membranes display no apparently change in appearance, flexibility, and toughness after a soaking treatment in pressurized water at 140 degrees C for 250 h.
Resumo:
Three new copper compounds, Cu-2[C12H8N2](2)[C28H2OS4O16][H2O](11.9) (1), Cu-2[C12H8N2](3)[C28H20S4O16][H2O](5) (2), and Cu-2[C12H8N2](4)[C24H12S8O16][H2O](10.5) (3), were hydrothermally synthesized and structurally determined by X-ray diffraction and TG-DTA analyses. Interestingly, Compounds 1 and 2 were synthesized in a one-pot reaction. Complexes 1 and 3 contain capsule units, which are further assembled into three-dimensional (3-D) architectures with a-Po-related topology by pi-pi stacking and/or hydrogen-bonding interactions.
Resumo:
A supramolecular complex Zn-2[Cl2H8N2](2)[C28H2OS4O16][H2O](17.7) (1), has been synthesized under hydrothermal conditions, and characterized by IR spectroscopy, TG and DTA analysis, and single crystal X-ray diffraction. Unprecedented (H2O)(10) water clusters consisting of cyclic pentamer (H2O)(5) and five dangling water molecules were observed in the lattice.
Resumo:
Water-soluble tetra-p-sulfonatocalix[4]arene, acting as a four-connected node, bridges the rare earth cations into a 3D porous MOF in which 1D smaller circular hydrophilic channels and larger quadratic ones are lined up along the c axis and interconnected to each other by the calixarene cavities and other interstices.
Resumo:
A 'discrete' (H2O)(16) cluster, featuring four basic cyclic nine-membered rings and a twelve-membered ring, illustrates a new mode of supramolecular association of water molecules.
Resumo:
An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6'-phosphatehexyl)fluorene-alt-1,4-phenylene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer.
Resumo:
A new hydrogen-bonded dinuclear copper(II) coordination compound has been synthesized from the Schiff-base ligand 6-(pyridine-2-ylhydrazonomethyl)phenol (Hphp). The molecular structure of [Cu-2(php)(2)(H2O2)(2)(ClO4)](ClO4)- (H2O) (1), determined by single-crystal X-ray diffraction, reveals the presence of two copper(II) centers held together by means of two strong hydrogen bonds, with O center dot O contacts of only 2.60-2.68 angstrom. Temperature-dependent magnetic susceptibility measurements down to 3 K show that the two metal ions are antiferromagnetically coupled (J = -19.8(2) cm(-1)). This exchange is most likely through two hydrogen-bonding pathways, where a coordinated water on the first Cu, donates a H bond to the O atoms of the coordinated php at the other Cu. This strong O center dot H (water) bonding interaction has been clearly evidenced by theoretical calculations. In the relatively few related cases from the literature, this exchange path, mediated by a (neutral) coordinated water molecule, was not recognized.
Resumo:
Docetaxel (DX) is one of the most effective antineoplastic drugs. Its current clinical administration is limited because of its hydrophobicity and Serious side effects. A polymer/DX conjugate is designed and successfully prepared to solve these problems. It is monomethoxy-poly(ethylene glycol)-block-poly(L-lactide)/DX (MPEG-PLLA/DX) It was synthesized by reacting DX with carboxyl-terminated copolymer MPEG-PLLA, which was prepared by reacting succinic anhydride with hydroxyl-terminated copolymer monomethoxy-poly(ethylene glycol)-block-poly (L-lactide) (MPEG-PLLA). Its structure and molecular weight was confirmed by H-1 NMR and GPC. The MPEG-PLLA/DX micelles in aqueous solution were prepared Using a SO]vent displacement method and characterized by dynamic light scattering for size and size distribution, and by transmission electron microscopy for surface morphology. Its antitumor activity against HeLa cancer cells evaluated by MTT assay showed that it had a similar antitumor activity to Pure D at the same drug content.
Resumo:
Lamellar platelets of triblock copolymers grown in dilute toluene solution with trace amounts of water can be used as templates for tethered diblock copolymer chain preparation and analysis. Polystyrene-bpoly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two different block fractions were used as model templates to generate tethered P2VP-b-PS chains on the platelet basal surfaces. In toluene solution the aggregation states of PS-b-P2VP-b-PEO were sensitive to the water content in the solution. For toluene with trace amount of water, spherical micelles were formed in the early stage and large square platelets would gradually grow from these spherical micelles. The hydrogen bonding between water and EO units was responsible for the formation of micelles and subsequent square platelets in the solution. Tethered P2VP-b-PS chains on basal surface of PEO platelets could be regarded as diblock copolymer brushes and the density (or: 0.086-0.36) and height (d: 3.5-14.3 nm) of these tethered chains could be easily modulated by changing the crystallization condition and/ or the molecular weight of each block. The tethered P2VP-b-PS chains were responsive to different solvent vapor.
Resumo:
Two copper-organic framework supramolecular assemblies of p-sulfonatocalix[4]arene and 1,10-phenanthroline Cu-2[C12H8N2][C28H20S4O16][H2O](23.5) (1) and Cu-3[C12H8N2](3)[C28H19S4O16]Cl[H2O](17.6) (2) were obtained by pH-dependent synthesis at room temperature. Both structures show ID water-filled channels (rectangular shape in I and triangular in 2) with the solvent-accessible volume occupying 30.8% (1) and 24.2% (2) of the unit-cell volume, respectively. The calixarene molecules in both structures assume analogous cone shapes of C-2 nu symmetry instead of the conventional C-4 nu symmetry. Their connecting to different amounts of copper/phenanthroline cations leads to the formation of different structures.
Resumo:
Regular micrometer-size porous polystyrene film is prepared by water droplet templating, i.e. breath figures are stabilized by the polymer in solution and thermocapillary flow arranges them into ordered packing. The influences of polystyrene molecular weight, solvent properties, and the relative humidity of atmosphere on the pattern formation and hole sizes are investigated. Two different kinds of hole packing fashion are also observed and their formation mechanisms are discussed.
Resumo:
The compounds (het)(PtCl6)2H(2)O 1, (het)(HgI4).H2O 2 (het = 2-(alpha-hydroxyethyl)thiamine) and (hpt)(Hg2Br6) 3 (hpt = 2-(alpha-hydroxypropyl)thiamine) have been prepared and structurally characterized by X-ray crystallography in order to study the influence of the anion and molecular conformation on the formation of supramolecular architectures that adsorb anionic species. Both het and hpt molecules adopt the usual S conformation for C2-substituted thiamine but differ from the F conformation for C2-free thiamine derivatives. Two types of characteristic ligand-anion complexation are observed, being of the forms C(6')-H...anion...thiazolium-ring (in 1 and 2) and N(4'1)-H...anion...thiazolium-ring (in 3). The reaction of het with PtCl62- or HgI42- gives a 1-D double-chain in 1, consisting of two hydrogen-bonded het chains, which are cross-linked by anions through hydrogen bonding and anion...aromatic-ring interactions, or a cationic 3-D framework in 2 formed by the stacking of hydrogen-bonded sheets with anion-and-water-filled channels. In the case of 3, hydrogen-bonded hpt dimers and HgBr62- anions form alternate cation-anion columns. A comparison with the cases of C2-free thiamine-anion complexes indicates that the change in molecular conformation results in novel supramolecular assemblies in 1 and 2 and an analogous architecture in 3, which also depends on the nature of the anions.
Resumo:
The permeation behavior of water vapor, H-2, CO2, O-2, N-2, and CH4 gases in a series of novel poly(aryl ether sulfone)s has been examined over a temperature range of 30-100 degreesC. These polymers include four alkyl-substituted cardo poly(aryl ether sulfone)s and four intermolecular interaction enhanced poly(aryl ether sulfone)s. Their water vapor and gas transport properties were compared to the unmodified cardo poly(aryl ether sulfone) (PES-C). It was found that the bulky alkyl substituents on the phenylene rings were advantageous for gas permeability, while the intermolecular hydrogen bonds and ionic bonds resulted in a considerable increase in gas permselectivity. The causes of the trend were interpreted according to free volume, interchain distance, and glass transition temperature, together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest was the observation that IMPES-L, which simultaneously bears bulky isopropyl substituent and pendant carboxylic groups, displayed 377% higher O-2 permeability and 5.3% higher O-2/N-2 permselectivity than PES-C. Furthermore, sodium salt form PES-Na+ and potassium salt form PES-K+ exhibited water vapor permeability twice as high as PES-C and H2O/N-2 selectivity in 10(5) order of magnitude.