57 resultados para Manganese nodules.
VALENCE STATE EQUILIBRIA BETWEEN COBALT AND MANGANESE IONS AND MAGNETIC-PROPERTIES OF LACO0.9MN0.1O3
Resumo:
According to the thermodynamic equilibria between the low spin state Co(III) (t2g6e(g)0) ion and the high spin state Co3+ (t2g4e(g)2) ion and between the cobalt and manganese ions with different valence state and spin state, an approximate semiempirical f
Resumo:
An investigation of electrode oxidation processes of (tetra-phenylporphinato) manganese (III) Perchlorate, (TPS)Mn(III)ClO4, was carried out during the titration of chloride anions by conventional cyclic voltammetry, thin-layer cyclic voltammetry and spectroelectrochemistry. It was demonstrated that in the presence of one equivalent amount of Cl-, the first one electron oxidation reaction corresponds to the Mn(III)I cation radical oxidation, and the second one electron oxidation corresponds to the cation radical/dication generation followed by an iso-porphyrin formation reaction, however in the presence of two equivalent amount of Cl-, the first one electron oxidation of Mn(III) gives Mn(IV) porphyrin and the second one electron oxidation generates cation radicals of Mn(IV) followed by an iso-porphyrin formation reactions. Mechanisms of these redox processes are postulated.
Resumo:
The paramagnetic susceptibility of lanthanum manganite has been measured over a wide temperature range (100-1073 K). On the basis of the thermodynamic equilibria between the various manganese ions with different valence and spin states and the magnetic interactions between the various manganese ions, a semiempirical formula has been proposed to calculate the paramagnetic susceptibilities of lanthanum manganite at different temperatures. The results indicate that most of the discrepancies between the calculated and experimental reciprocal susceptibilities of lanthanum manganite are less than 10% and that the relative contents of the various manganese ions in lanthanum manganite vary with temperature. The relative content of the trivalent manganese ion with a high spin state is dominant over the whole temperature range, while be relative content of the tetravalent manganese ion with a high spin state decreases monotonously with increasing temperature. At 300 K the calculated relative content of the tetravalent manganese ion in lanthanum manganite is about 34%, which is in good agreement with the experimental result (30%). There are some divalent manganese ions present in lanthanum manganite from low temperature to high temperature. The ratio of the relative contents of the tetravalent and divalent manganese ions in the compound varies with temperature. Above 750 K the relative content of the tetravalent manganese ion is less than that of the divalent manganese ion. The variation in the electrical resistivity of lanthanum manganite with temperature has also been interpreted reasonably.
Resumo:
The mechanism of electrochemical redox reactions of (tetra-phenylporphinato) managanese(III) perchlorate, (TPP)Mn(III)ClO4, was studied In the presence of chloride anions in dichloroethane solution. It was demonstrated that Mn(II) or Mn (III) centre can be coordinated with only one chloride anion, this result makes an about 100 mV negative shift of half-wave potential of Mn (III)/Mn (II) reduction. An equilibrium constant of 2.2 x 10(4) was determined for the complexation reaction of Cl- and Mn(III) centre.
Resumo:
Manganese superoxide dismutase (MnSOD) plays an important role in crustacean immune defense reaction by eliminating oxidative stress. Knowledge on MnSOD at molecular level allows us to understand its regulatory mechanism in crustacean immune system. A novel mitochondrial manganese superoxide dismutase (mMnSOD) was cloned from hepatopancreas of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1185 bp with a 660 bp open reading frame, encoding 220 amino acids. The deduced amino acid sequence contains a putative signal peptide of 20 amino acids. Sequence comparison showed that the mMnSOD of F. chinensis shares 88% and 82% identity with that of giant freshwater prawn Macrobrachium rosenbergii and blue crab Callinectes sapidus, respectively. mMnSOD transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill by Northern blotting. RT-PCR analysis indicated that mMnSOD showed different expression profiles in shrimp hemocytes and hepatopancreas after artificial infection with while spot syndrome virus (WSSV). In addition, a fusion protein containing mMnSOD was produced in vitro. LC-ESI-MS analysis showed that two peptide fragments (-GDVNTVISLAPALK- and -NVRPDYVNAIWK-) of the recombinant protein were identical to the corresponding sequence of M. rosenbergii mMnSOD, and the enzyme activity of the refolded recombinant protein was also measured. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Manganese abnormity has been observed in the Holocene sediments of the mud area of Bohai Sea. On the basis of grain size, chemical composition, heavy mineral content and accelerator mass spectrometry (AMS) C-14 dating of foraminifer, relationships between manganese abnormity and sedimentation rates, material source, hydrodynamic conditions are probed. Manganese abnormity occurred during the Middle Holocene when sea level and sedimentation rates were higher than those at present. Sedimentary hiatus was not observed when material sources and hydrodynamic conditions were quite similar. Compared with the former period, the latter period showed a decrease in reduction environment and an inclination toward oxidation environment with high manganese content, whereas provenance and hydrodynamic conditions showed only a slight change. From the above observations, it can be concluded that correlation among manganese abnormity, material source, and hydrodynamic conditions is not obvious. Redox environment seems to be the key factor for manganese enrichment, which is mainly related to marine authigenic process.
Resumo:
A novel manganese superoxide dismutase (MnSOD) was cloned from bay scallop Argopecten irradians by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of MnSOD was of 1207 bp with a 678 bp open reading frame encoding 226 amino acids. The deduced amino acid sequence contained a putative signal peptide of 26 amino acids. Sequence comparison showed that the MnSOD of A. irradians shared high identity with MnSOD in invertebrates and vertebrates, such as MnSOD from abalone Haliotis discus discus (ABG88843) and frog Xenopus laevis (AAQ63483). Furthermore, the 3D structure of bay scallop MnSOD was predicted by SWISS-MODEL Protein Modelling Server and compared with those of other MnSODs. The overall structure of bay scallop MnSOD was similar to those of zebrafish Danio rerio, fruit fly Drosophila melanogaster, Chinese shrimp Fenneropenaeus chinensis, human Homo sapiens, and had the highest similarity to scallop Mizuhopecten yessoensis and abalone H. discus discus. A quantitative real-time PCR (qRT-PCR) assay was developed to detect the mRNA expression of MnSOD in different tissues and the temporal expression in haemocytes following challenge with the bacterium Vibrio anguillarum. A higher-level of mRNA expression of MnSOD was detected in gill and mantle. The expression of MnSOD reached the highest level at 3 h post-injection with V. anguillarum and then slightly recovered from 6 to 48 h. The results indicated that bay scallop MnSOD was a constitutive and inducible protein and thus could play an important role in the immune responses against V anguillarum infection. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Manganese-modified mesoporous MCM-41 molecular sieves were synthesized at the absence of alkaline metal ions under mild alkaline condition using cetylpyridinium bromide surfactant as a template, and characterized with X-ray diffraction, N-2 adsorption, transmission electron microscopy, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) spectroscopies. The synthesized MnMCM-41 has a high pore volume of 1.30 cm(3) g(-1) with a corresponding surface area of 1510 m(2) g(-1). The ESR and Si-29 MAS NMR spectra revealed the presence of framework manganese ions in either the as-synthesized or calcined forms. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The polymer-supported bimetallic catalyst PVP-PdCl2-MnCl2 (PVP=poly(N-vinyl-2-pyrrolidone)) exhibits high activity and selectivity for the oxidative carbonylation of amines with carbon monoxide and oxygen to carbamate esters under atmospheric pressure in the presence of a base (NaOAc). This catalyst is prepared by the addition of MnCl2 to the alcoholic solution of PVP-PdCl2 in situ. A remarkable bimetallic synergic effect and the role of PVP in PVP-PdCl2-MXn (MXn=the second transition metal component such as NiCl2, CoCl2, MnCl2 and FeCl3) gives rise to an obvious increase in the conversion and selectivity for the reaction. Among the second metal components tested, Mn-Pd exerts the strongest synergic effect. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Total oxidation of chlorinated aromatics on supported manganese oxide catalysts was investigated. The catalysts have been prepared by wet impregnation method and characterized by XRD and TPR. Among the catalysts with the supports of TiO(2), Al(2)O(3) and SiO(2), titania supported catalyst (MnO(x)/TiO(2)) gives the highest catalytic activity. MnO(x)/TiO(2) (Mn loading, 1.9 wt.%) shows the total oxidation of chlorobenzene at about 400 degreesC. The activity can be stable for over 82 h except for the first few hours. At lower Mn loadings for MnO(x)/TiO(2), only one reduction peak appears at about 400 degreesC due to the highly dispersed manganese oxide. With the increase of Mn loading, another reduction peak emerges at about 500 degreesC, which is close to the reduction peak of bulk Mn(2)O(3) at 520 degreesC. TPR of the used catalyst is totally different from that of the fresh one indicating that the chemical state of the active species is changed during the chlorobenzene oxidation. The characterization studies of MnO(x)/TiO(2) showed that the highly dispersed MnO(x) is the precursor of the active phase, which can be converted into the active phase, mainly oxychlorinated manganese (MnO(y)Cl(z)), under working conditions of chlorobenzene oxidation. (C) 2001 Elsevier Science B.V. All rights reserved.