70 resultados para Magma Mixing
Resumo:
The thermal population in photocarrier systems coupled by hole mixing tunneling is studied by an analysis of the high energy tails in cw photoluminescence spectra of asymmetric coupled double wells. Photocarriers in wide well are heated due to hole transfer from the narrow well through resonant tunneling as well as by photon heating. The influences of the excitation intensity and lattice temperature on the tunneling transfer and thermal population are discussed.
Numerical analysis of four-wave-mixing based multichannel wavelength conversion techniques in fibers
Resumo:
We numerically investigate four-wave-mixing (FWM) based multichannel wavelength conversion for amplitude-modulated signals, phase-modulated signals, together with mixed amplitude and phase modulated signals. This paper also discusses the influence of stimulated Brillouin scattering (SBS) effects on high-efficiency FWM-based wavelength conversion applications. Our simulation results show that DPSK signals are more suitable for FWM-based multichannel wavelength conversion because the OOK signals will suffer from the inevitable datapattern-dependent pump depletion. In future applications, when the modulation format is partially upgraded from OOK to DPSK, the influence of OOK signals on the updated DPSK signals must be considered when using multichannel wavelength conversion. This influence becomes severe with the increase of OOK channel number. It can be concluded that DPSK signals are more appropriate for both transmission and multichannel wavelength conversion,especially in long haul and high bit-rate system.
Resumo:
国家自然科学基金
Resumo:
Resumo:
We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/- 2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 mu m, and the corresponding nonlinearity coefficient and birefringence are about 150 W-1 km(-1) and 2.5 x 10(-3) at 1.55 mu m, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing. (C) 2010 Optical Society of America
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
Within the framework of a nonlinear chiral Lagrangian we explore the nontrivial nature of f(0)(600) and f(0)(1370) in terms of quarkonium, tetraquark and gluonium components. The mass constraints are obtained and the strong and radiative partial widths are calculated to demonstrate and discriminate these components. The static properties of f(0)(1500) and glueball are also studied. Our results are confronted with the experimental and theoretical data available as well as the upcoming measurements. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, BPO4-xSiO(2) (X: SiO2/BPO4 molar ratio, 0-70%) and BPO4-xAl(2)O(3) (X: Al2O3/BPO4 molar ratio, 0-20%) powder samples were prepared by the Pechini-type sol-gel (PSG) process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, kinetic decay, and X-ray photoelectron spectra (XPS), respectively. It was found that the Pechini-type sol-gel-derived BPO4-xSiO(2) annealed at 1000 degrees C and BPO4-xAl(2)O(3) annealed at 960 degrees C exhibited bright bluish-white emissions centered at 428 and 413 nm, respectively. The luminescence decay curve analysis indicates that each sample has two kinds of lifetimes (more than 0.4 ms and less than 10 ns) and two types of kinetic decay behaviors, which can be fitted into a double-exponential function and a single-exponential function, respectively.
Resumo:
Shear may shift the phase boundary towards the homogeneous state (shear induced mixing, SIM), or in the opposite direction (shear induced demixing, SID). SIM is the typical behavior of mixtures of components of low molar mass and polymer solutions, SID can be observed with solutions of high molar mass polymers and polymer blends at higher shear rates. The typical sequence with increasing shear rate is SIM, then occurrence of an isolated additional immiscible area (SLD), melting of this island into the main miscibility gap, and finally SIM again. A three phase line originates and ends in two critical end points. Raising pressure increases the shear effects. For copolymer containing systems SID is sometimes observed at very low shear rates, preceding the just mentioned sequence of shear influences.
Resumo:
Phase behaviors and heats of mixing of the miscible blends of poly(ethylene oxide) (PEO) and poly(vinyl acetate) (PVAc) with different molecular weights were investigated by DSC. A method proposed by Natasohn and Ebert et al. was adopted to estimate the binodal temperatures and the enthalpies of mixing from onset temperatures and values of areas of a series of endothermic peaks (corresponding to heats of demixing), respectively, in their heating scanning thermograms obtained with different heating rates. Phase diagrams and heats of mixing of this blending system were also predicted by using Sanchez-Lacombe lattice fluid theory. A very good agreement was obtained for both. phase behaviors and heats of mixing obtained with two different methods.
Resumo:
The aim of this work is to describe the most recent achievements in the field of the physical chemistry of mixing. The systems studied have been classified according to the amount of thermic effect due to the blending and its interpretation. When polystyrene (PS) and poly(alpha-methylstyrene) (P alpha MS) are blended, the interaction is weak and Delta(mix)H is close to zero. The presence of polar atoms and/or groups increases the stability of the blend and, therefore, Delta(mix)H becomes more negative. Poly(ethylene oxide) (PEO), poly(methyl acrylate) (PMA), poly(methyl methacrylate) (PMMA) and poly(vinylacetate) (PVAc), when mixed to form binary systems, show large differences from their properties when pure. If hydrogen bonding takes place, the interactions are readily detected and a large effect is calorimetrically determined. Cellulose diacetate (CDA) and poly(vinylpyrrolidone) (PVP) have been studied as an example of a strongly interacting system.
Resumo:
An on-line controlled 7 1 sterilizable photobioreactor was used for the optimisation of a culture of gametophytes of Undaria pinnatifida. The gametophytes, which had been stored for three years in a culture cabinet at 16 degreesC, could rapidly grow in the photobioreactor under controlled conditions. The rate of increase of dissolved oxygen and pH were used to monitor the photosynthetic activity. Optimal gametophytes density changed varying the light intensity. The optimal cell densities were 3.24 and 3.45 g FW l(-1) when the cultures were exposed to 61.7 and 82.3 muE m(-2) s(-1), respectively. The optimal cell density was higher under a high photon flux density (PFD) than under low PFD. On the other hand, the optimal light intensities were different for different cell density cultures. The light saturation point was higher at high cell density cultures than at low cell density cultures. The optimal rotational speed was 150 rpm for high cell density culture in the photobioreactor. (C) 2003 Elsevier B.V. All rights reserved.