80 resultados para MULTIPHASE STEELS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seed bubbles are generated on microheaters located at the microchannel upstream and driven by a pulse voltage signal, to improve flow and heat transfer performance in microchannels. The present study investigates how seed bubbles stabilize flow and heat transfer in micro-boiling systems. For the forced convection flow, when heat flux at the wall surface is continuously increased, flow instability is self-sustained in microchannels with large oscillation amplitudes and long periods. Introduction of seed bubbles in time sequence improves flow and heat transfer performance significantly. Low frequency (similar to 10 Hz) seed bubbles not only decrease oscillation amplitudes of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures, but also shorten oscillation cycle periods. High frequency (similar to 100 Hz or high) seed bubbles completely suppress the flow instability and the heat transfer system displays stable parameters of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures. Flow visualizations show that a quasi-stable boundary interface from spheric bubble to elongated bubble is maintained in a very narrow distance range at any time. The seed bubble technique almost does not increase the pressure drop across microsystems, which is thoroughly different from those reported in the literature. The higher the seed bubble frequency, the more decreased heating surface temperatures are. A saturation seed bubble frequency of 1000-2000 Hz can be reached, at which heat transfer enhancement attains the maximum degree, inferring a complete thermal equilibrium of vapor and liquid phases in microchannels. Benefits of the seed bubble technique are the stabilization of flow and heat transfer, decreasing heating surface temperatures and improving temperature uniformity of the heating surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-channel effect is important to understand transport phenomenon in phase change systems with parallel channels. In this paper, visualization studies were performed to study the multi-channel effect in a silicon triple-channel condenser with an aspect ratio of 0.04. Saturated water vapor was pumped into the microcondenser, which was horizontally positioned. The condenser was cooled by the air natural convention heat transfer in the air environment. Flow patterns are either the annular flow at high inlet vapor pressures, or a quasi-stable elongated bubble at the microchannel upstream followed by a detaching or detached miniature bubble at smaller inlet vapor pressures. The downstream miniature bubble was detached from the elongated bubble tip induced by the maximum Weber number there. It is observed that either a single vapor thread or dual vapor threads are at the front of the elongated bubble. A miniature bubble is fully formed by breaking up the vapor thread or threads. The transient vapor thread formation and breakup process is exactly symmetry against the centerline of the center channel. In side channels, the Marangoni effect induced by the small temperature variation over the channel width direction causes the vapor thread formation and breakup process deviating from the side channel centerline and approaching the center channel. The Marangoni effect further forces the detached bubble to rotate and approach the center channel, because the center channel always has higher temperatures, indicating the multi-channel effect. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from -20 to 190 K, and the heat fluxes reach 140 W/cm(2). The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid. Boiling curves of copper foams show three distinct regions. Region I and II are those of natural convection heat transfer, and nucleate boiling heat transfer for all the foam covers. Region III is that of either a resistance to vapor release for the 30 and 60 ppi foam covers, or a capillary-assist liquid flow towards foam cells for the 90 ppi foam covers. The value of ppi has an important effect on the thermal performance. Boiling curves are crossed between the high and low ppi foam covers. Low ppi foams have better thermal performance at low surface superheats, but high ppi foams have better one at moderate or large surface superheats and extend the operation range of surface superheats. The effects of other factors such as pool liquid temperature, foam cover thickness on the thermal performance are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high cycle and Very-High-Cycle Fatigue (VHCF) properties of a structural steel with smooth and notched specimens were studied by employing a rotary bending machine with frequency of 52.5 Hz. For smooth specimens, VHCF failure did occur at fatigue cycles of 7.1 x 10(8) with the related S-N curve of stepwise tendency. Scanning Electron Microscopy (SEM) was used for the observations of the fracture surfaces It shows that for smooth specimens the crack origination is surface mode in the failure regime of less than 10(7) cycles While at VHCF regime, the material failed from the nonmetallic inclusion lies in the interior of material, leading to the formation of fisheye pattern. The dimensions of crack initiation region were measured and discussed with respect to the number of cycles to failure. The mechanism analysis by means of low temperature fracture technique shows that the nonmetallic inclusion in the interior of specimen tends to debond from surrounding matrix and form a crack. The crack propagates and results to the final failure. The stress intensity factor and fatigue strength were calculated to investigate the crack initiation properties. VHCF study on the notched specimens shows that the obtained S-N curve decreases continuously. SEM analysis reveals that multiple crack origins are dominant on specimen surface and that fatigue crack tends to initiate from the surface of the specimen. Based on the fatigue tests and observations, a model of crack initiation was used to describe the transition of fatigue initiation site from subsurface to surface for smooth and notched specimens. The model reveals the influences of load, grain size, inclusion size and surface notch on the crack initiation transition. (C) 2010 Elsevier Ltd. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the formation and characterization of nano-sized grains on the modified surfaces of GCr15 and H13 steels have been investigated. The material was processed by pulsed laser surface melting (LSM) under different depths of de-ionized water. The microstructures and phases of the melted zones were examined by x-ray diffraction, environmental field emission scanning electron microscopy and high resolution transmission electron microscopy. The results indicate that LSM under water can successfully fabricate nano-scaled grains on the surfaces of steel, due to the rapid solidification and crystallization by heterogeneous nucleation. The elemental segregation of chromium and activated heterogeneous nucleation mechanism of austenite in liquid metal play a key role in the formation of nano-sized grains at high cooling rates. This one-step technique provides us a new way to prepare uniform nano-scaled grains, and is of great importance for further understanding the growth of nano-materials under extreme conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

<正>The problem of controlling the droplet motions in multiphase flows on the microscale has gained increasing attention.It is critical to understand the relevant physics on droplet hydrodynamics and thus control the generation,motion,splitting,and coalescence of droplets in

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past years, steady pool boiling of degassed R113 on thin platinum wires has been studied systematically in our lab, including experiments in long-term microgravity aboard RS-22, in short-term microgravity in the Drop Tower Beijing / NMLC, and in normal gravity on the ground. Slight enhancement of nucleate boiling heat transfer is observed in microgravity, while dramatic changes of bubble behaviors are much evident. The value of CHF in microgravity is lower than that in normal gravity, but it can be predicted well by the Lienhard-Dhir correlation, although the dimensionless radius in the present case is far beyond its initial application range. The scaling of CHF with gravity is thus much different from the traditional viewpoint. Considering the influence of the Marangoni effects, the different characteristics of bubble behaviors in microgravity have been explained. A new bubble departure model has also been proposed, which can predict the whole observation both in microgravity and in normal gravity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study has attempted to investigate phase inversion and frictional pressure gradients during simultaneous vertical flow of oil and water two-phase through upward and downward pipes. The liquids selected were white oil (44 mPa s viscosity and 860 kg/m3 density) and water. The measurements were made for phase velocities varying from 0 to 1.24 m/s for water and from 0 to 1.87 m/s for oil, respectively. Experiments were carried either by keeping the mixture velocity constant and increasing the dispersed phase fraction or by keeping the continuous phase superficial velocity constant and increasing the dispersed phase superficial velocity. From the experimental results, it is shown that the frictional pressure gradient reaches to its lower value at the phase inversion point in this work. The points of phase inversion are always close to an input oil fraction of 0.8 for upward flow and of 0.75 for downward flow, respectively. A few models published in the literature are used to predict the phase inversion point and to compare the results with available experimental data. Suitable methods are suggested to predict the critical oil holdup at phase inversion based on the different viscosity ratio ranges. Furthermore, the frictional pressure gradient is analyzed with several suitable theoretical models according to the existing flow patterns. The analysis reveals that both the theoretical curves and the experimental data exhibit the same trend and the overall agreement of predicted values with experimental data is good, especially for a high oil fraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the Euler-Euler (E-E) and Euler-Lagrange (E-L) models designed for the same chemical mechanism of heterogeneous reactions were used to predict the performance of a typical sudden-expanding coal combustor. The results showed that the current E-E model underestimated the coal burnout rate because the particle temperature fluctuation on char combustion is not adequately considered. A comparison of the E-E and E-L simulations showed the underestimation of heterogeneous chemical reaction rates by the E-E model. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-activation Ferritic/Martensitic steels are a kind of important structural materials candidate to the application in advanced nuclear energy systems.Possible degradation of properties and even failure in the condition of high-temperature and high helium production due to energetic neutron irradiation in a fusion reactor is a major concern with the application of this kind of materials.In the present work microstructural evolution in a 9Cr Ferritic/Martensitic steel(T92B) irradiated with 122 MeV 20Ne ions...中文摘要:低活化的铁素体/马氏体钢是先进核能装置(如聚变堆)的重要候选结构材料。在聚变堆实际工作环境下,由于高温和高氦产生率引起的材料失效是这类材料面临的一个重要问题。本项研究以兰州重离子加速器(HIRFL)提供的中能惰性气体离子束(20Ne,122 MeV)作为模拟辐照条件,借助透射电子显微镜,研究了一种低活化的9Cr铁素体/马氏体钢(T92B)组织结构的变化和辐照肿胀。实验结果表明,高温下当材料中晶格原子的撞出损伤和惰性气体原子沉积浓度超过一定限值时,材料内部形成高浓度的空洞,并且空洞肿胀率显著依赖于辐照温度和剂量;在马氏体板条界面及其它晶界处空洞趋于优先形成,并且在晶界交汇处呈加速生长。基于氦泡的形核生长与空洞肿胀的经典模型探讨了在不同辐照条件(He离子、Ne离子、Fe/He离子双束、快中子、Ni离子)下铁素体/马氏体钢中肿胀率数据的关联。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the void swelling behavior of a 9Cr ferritic/martensitic steel irradiated with energetic Ne-ions is studied. Specimens of Grade 92 steel (a 9%Cr ferritic/martensitic steel) were subjected to an irradiation of Ne-20-ions (with 122 MeV) to successively increasing damage levels of 1, 5 and 10 dpa at a damage peak at 440 and 570 degrees C, respectively. And another specimen was irradiated at a temperature ramp condition (high flux condition) with the temperature increasing from 440 up to 630 degrees C during the irradiation. Cross-sectional microstructures were investigated with a transmission electron microscopy (TEM). A high concentration of cavities was observed in the peak damage region in the Grade 92 steel irradiated to 5 dpa, and higher doses. The concentration and mean size of the cavities showed a strong dependence on the dose and irradiation temperature. Enhanced growth of the cavities at the grain boundaries, especially at the grain boundary junctions, was observed. The void swelling behavior in similar 9Cr steels irradiated at different conditions are discussed by using a classic void formation theory. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an investigation on the micro-structure of an Fe-base oxide-dispersion-strengthened (ODS) alloy irradiated with high-energy Ne-20 ions to different doses at a temperature around 0.5T(m) (T-m is the melting point of the alloy) is presented. Investigation with the transmission electron microscopy found that the accelerated growth of voids at grain-boundaries, which is usually a concern in conventional Fe-base alloys under conditions of inert-gas implantation, was not observed in the ODS alloy irradiated even to the highest dose (12000 at.ppm Ne). The reason is ascribed to the enhanced recombination of point defects and strong trapping of Ne atoms at the interfaces of the nano-scale oxide particles in grains. The study showed that ODS alloys have good resistance to the high-temperature inter-granular embrittlement due to inert-gas accumulation, exhibiting prominence of application in harsh situations of considerable helium production at elevated temperatures like in a fusion reactor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multiphase morphology of high impact polypropylene (hiPP), which is a reactor blend of polypropylene (PP) with ethylene-propylene copolymer, was investigated by transmission electron microscopy, selected area electron diffraction, atomic force microscopy, and field-emission scanning electron microscopy techniques in conjunction with an analysis of the hiPP composition and chain structure based on solvent fractionation, C-13-NMR, and differential scanning calorimetry measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A triblock copolymer PLA-b-AP-b-PLA (PAP) of polylactide (PLA) and aniline pentamer (AP) with the unique properties of being both electroactive and biodegradable is synthesized by coupling an electroactive carboxyl-capped AP with two biodegradable bihydroxyl-capped PLAs via a condensation reaction. Three different molecule weight PAP copolymers are prepared. The PAP copolymers exhibit excellent electroactivity similar to the AP and polyaniline, which may stimulate cell proliferation and differentiation. The electrical conductivity of the PAP2 copolymer film (similar to 5 x 10(-6) S/cm) is in the semiconducting region. Transmission electron microscopic results suggest that there is microphase separation of the two block segments in the copolymer, which might contribute to the observed conductivity. The biodegradation and biocompatibility experiments in vitro prove the copolymer is biodegradable and biocompatible. Moreover, these new block copolymer shows good solubility in common organic solvents, leading to the system with excellent processibility. These biodegradable PAP copolymers with electroactive function thus possess the properties that would be potentially used as scaffold materials for neuronal or cardiovascular tissue engineering.