211 resultados para MASS ANALYZED LON KINETIC ENERGY SPECTROMETRY(MIKES)
Resumo:
A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free-falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of I m x I m, the expected number of received free-failing raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re-detachment amount. The re-detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free-falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re-detachment amount were small parts of the total splash amount. Their proportions were 0.15% and 2.6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil-splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).
Resumo:
Eddies are frequently observed in the northeastern South China Sea (SCS). However, there have been few studies on vertical structure and temporal-spatial evolution of these eddies. We analyzed the seasonal Luzon Warm Eddy (LWE) based on Argo float data and the merged data products of satellite altimeters of Topex/Poseidon, Jason-1 and European Research Satellites. The analysis shows that the LWE extends vertically to more than 500 m water depth, with a higher temperature anomaly of 5A degrees C and lower salinity anomaly of 0.5 near the thermocline. The current speeds of the LWE are stronger in its uppermost 200 m, with a maximum speed of 0.6 m/s. Sometimes the LWE incorporates mixed waters from the Kuroshio Current and the SCS, and thus has higher thermohaline characteristics than local marine waters. Time series of eddy kinematic parameters show that the radii and shape of the LWE vary during propagation, and its eddy kinetic energy follows a normal distribution. In addition, we used the empirical orthogonal function (EOF) here to analyze seasonal characteristics of the LWE. The results suggest that the LWE generally forms in July, intensifies in August and September, separates from the coast of Luzon in October and propagates westward, and weakens in December and disappears in February. The LWE's westward migration is approximately along 19A degrees N latitude from northwest of Luzon to southeast of Hainan, with a mean speed of 6.6 cm/s.
Resumo:
Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at free-stream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the convection terms of Navier-Stokes equations, and fine mesh is adopted to minimize numerical dissipation. Compressibilty effects on the near-wall turbulent kinetic energy budget are studied. The cross-stream extended self-similarity and scaling exponents including the near-wall region are studied. In high Mach number flows, the coherence vortex structures are arranged to be smoother and streamwised, and the hair-pin vortices are less likely to occur.
Resumo:
Wavelet Variable Interval Time Average (WVITA) is introduced as a method incorporating burst event detection in wall turbulence. Wavelet transform is performed to unfold the longitudinal fluctuating velocity time series measured in the near wall region of a turbulent boundary layer using hot-film anemometer. This unfolding is both in time and in space simultaneously. The splitted kinetic of the longitudinal fluctuating velocity time series among different scales is obtained by integrating the square of wavelet coefficient modulus over temporal space. The time scale that related to burst events in wall turbulence passing through the fixed probe is ascertained by maximum criterion of the kinetic energy evolution across scales. Wavelet transformed localized variance of the fluctuating velocity time series at the maximum kinetic scale is put forward instead of localized short time average variance in Variable Interval Time Average (VITA) scheme. The burst event detection result shows that WVITA scheme can avoid erroneous judgement and solve the grouping problem more effectively which is caused by VITA scheme itself and can not be avoided by adjusting the threshold level or changing the short time average interval.
Resumo:
Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 fi,Hes its diameter could be generated with a DC are torch by! restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including are channel geometry gas flow I ate, and feeding methods, etc. Influence of flow turbulence at the torch,nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet, with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent are let.
Resumo:
To develop low-pollution burners, the effect of a coal concentrator on NO formation in swirling coal combustion is studied using both numerical simulation and experiments. The isothermal gas-particle two-phase velocities and particle concentration in a cold model of swirl burners with and without coal concentrators were measured using the phase Doppler particle anemometer (PDPA). A full two-fluid model of reacting gas-particle flows and coal combustion with an algebraic unified second-order moment (AUSM) turbulence-chemistry model for the turbulent reaction rate of NO formation are used to simulate swirling coal combustion and NO formation with different coal concentrators. The results give the turbulent kinetic energy, particle concentration, temperature and NO concentration in cases of with and without coal concentrators. The predicted results for cold two-phase flows are in good agreement with the PDPA measurement results, showing that the coal concentrator increases the turbulence and particle concentration in the recirculation zone. The combustion modeling results indicate that although the coal concentrator increases the turbulence and combustion temperature, but still can remarkably reduce the NO formation due to creating high coal concentration in the recirculation zone.
Resumo:
Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.
Resumo:
Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8 x 10(3) to 1.0 x 10(5), with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2 similar to 3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5 similar to 6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed.
Resumo:
The piezoelastodynamic field equations are solved to determine the crack velocity at bifurcation for poled ferroelectric materials where the applied electrical field and mechanical stress can be varied. The underlying physical mechanism, however, may not correspond to that assumed in the analytical model. Bifurcation has been related to the occurrence of a pair of maximum circumferential stress oriented symmetrically about the moving crack path. The velocity at which this behavior prevails has been referred to as the limiting crack speed. Unlike the classical approach, bifurcation will be identified with finite distances ahead of a moving crack. Nucleation of microcracks can thus be modelled in a single formulation. This can be accomplished by using the energy density function where fracture initiation is identified with dominance of dilatation in relation to distortion. Poled ferroelectric materials are selected for this study because the microstructure effects for this class of materials can be readily reflected by the elastic, piezoelectic and dielectric permittivity constants at the macroscopic scale. Existing test data could also shed light on the trend of the analytical predictions. Numerical results are thus computed for PZT-4 and compared with those for PZT-6B in an effort to show whether the branching behavior would be affected by the difference in the material microstructures. A range of crack bifurcation speed upsilon(b) is found for different r/a and E/sigma ratios. Here, r and a stand for the radial distance and half crack length, respectively, while E and a for the electric field and mechanical stress. For PZT-6B with upsilon(b) in the range 100-1700 m/s, the bifurcation angles varied from +/-6degrees to +/-39degrees. This corresponds to E/sigma of -0.072 to 0.024 V m/N. At the same distance r/a = 0.1, PZT-4 gives upsilon(b) values of 1100-2100 m/s; bifurcation angles of +/-15degrees to +/-49degrees; and E/sigma of -0.056 to 0.059 V m/N. In general, the bifurcation angles +/-theta(0) are found to decrease with decreasing crack velocity as the distance r/a is increased. Relatively speaking, the speed upsilon(b) and angles +/-theta(0) for PZT-4 are much greater than those for PZT-6B. This may be attributed to the high electromechanical coupling effect of PZT-4. Using upsilon(b)(0) as a base reference, an equality relation upsilon(b)(-) < upsilon(b)(0) < upsilon(b)(+) can be established. The superscripts -, 0 and + refer, respectively, to negative, zero and positive electric field. This is reminiscent of the enhancement and retardation of crack growth behavior due to change in poling direction. Bifurcation characteristics are found to be somewhat erratic when r/a approaches the range 10(-2)-10(-1) where the kinetic energy densities would fluctuate and then rise as the distance from the moving crack is increased. This is an artifact introduced by the far away condition of non-vanishing particle velocity. A finite kinetic energy density prevails at infinity unless it is made to vanish in the boundary value problem. Future works are recommended to further clarify the physical mechanism(s) associated with bifurcation by means of analysis and experiment. Damage at the microscopic level needs to be addressed since it has been known to affect the macrocrack speeds and bifurcation characteristics. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The failure of hydraulic structures in many estuaries and coastal regions around the world has been attributed to sediment transport and local scour. The sediment incipience in homogenous turbulence generated by oscillating grid is studied in this paper. The turbulent flow is measured by particle tracer velocimetry (PTV) technique. The integral length scale and time scale of turbulence are obtained. The turbulent flow near the wall is measured by local optical magnification. The sediment incipience is described by static theory. The relationship of probability of sediment incipience and the turbulent kinetic energy were obtained experimentally and theoretically. The distribution of the turbulent kinetic energy near the wall is found to obey the power law and the turbulent energy is further identified as the dynamic mechanism of sediment incipience.
Resumo:
'Notch-sensitive regions' have been observed during a series of experimental investigations into the dynamic plastic behaviour and failure of thin-walled metallic radially notched circular rings with are-shaped supports subjected to concentrated impact loads. The experimental results show that the exterior notches at some regions have no effect on the deformation of the rings, but do have effect at the remaining regions. The notch-sensitive region is theoretically determined by using the equivalent structures technique; fairly good agreement has been reached between the simple theory and the experimental results. Both dimensional and theoretical analyses prove that whether a plastic hinge formed or not at the notched section does not depend on the mean radius of the ring and the input kinetic energy. It depends on the weak coefficient of the notched section and the angle of the support. Generally speaking, there are mainly three failure modes for a notched circular ring with are-shaped support under impact loading: Mode I, large inelastic deformation when the notch is outside the sensitive region, in this case the ring deforms as a normal one; Mode II, large inelastic deformation only at some part of the ring and tearing occurred at the notched sections; Mode III, large inelastic deformation and total rupture occurred at the notched sections. It is believed that the present study could assist the understanding of the dynamic behaviour and failure of other kinds of nonstraight components with macroscopic imperfections under impulsive loading.
Resumo:
本文将太阳风涨落传输能量产生磁层亚暴的机制推广到无碰撞等离子体过程。太阳风的涨落在磁层顶激发压缩阿尔文波,并在磁尾的无碰撞等离子体中传播。尾瓣中满足条件β<<1,而等离子体片中β≥1,其中β为等离子体压力与磁压之比。这样,快磁声波在尾瓣中几乎不衰减,而在等离子体片中很快衰减,将波动能量耗散在等离子体片中使等离子体加热或者粒子加速。这种机制还表明,磁尾等离子体片中的高能粒子可以由太阳风涨落动能耗散而被加速,不一定是直接源于太阳。
Resumo:
Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.
Resumo:
Abstract. A low power arcjet-thruster of 1 kW-class with gas mixture of H2-N2 or pure argon as the propellant is fired at a chamber pressure about 10 Pa. The nozzle temperature is detected with an infrared pyrometer; a plate set perpendicular to the plume axis and connected to a force sensor is used to measure the thrust; a probe with a tapered head is used for measuring the impact pressure in the plume flow; and a double-electrostatic probe system is applied to evaluate the electron temperature. Results indicate that the high nozzle temperature could adversely affect the conversion from enthalpy to kinetic energy. The plume flow deviates evidently from the LTE condition, and the rarefied-gas dynamic effect should be considered under the high temperature and low-pressure condition in analyzing the experimental phenomena.