53 resultados para MAP kinase
Resumo:
Arginine kinase (AK) is a phosphotransferase that plays a critical role in energy metabolism in invertebrates. in this paper, the full-length cDNA of AI( was cloned from shrimp, Litopenaeus vannamei by using RT-PCR and RACE PCR. It was 1446 bp encoding 356 amino acids, and belongs to the conserved phosphagen kinase family. The quantitative real-time reverse transcription PCR analysis revealed a broad expression of AK with the highest expression in the muscle and the lowest in the skin. The expression of AK after challenge with LIPS was tested in hemocytes and muscle, which indicated that the two peak values were 6.2 times (at 3 h) and 10.14 times (at 24 h) in the hemocytes compared with the control values, respectively (P < 0.05), while the highest expression of AK was 41 times (at 24 h) in the muscle compared with the control (P < 0.05). In addition, AK was expressed in Eschetichia coli by prokaryotic expression plasmid pGEX-4T-2. The recombinant protein was expressed as glutathione s-transferase (GST) arginine kinase (GST-AK) fusion protein, which was purified by affinity chromatography using Glutathione Sepharose 4B. After cleavage from GST by using a site-specific protease, the recombinant protein was identified by ESI-MS and showed AK activity. After treatment with 10 mM ATP, the enzyme activity significantly increased. However, the enzyme activity was inhibited by 10 mM alpha-ketoglutarate, 50 mM glucose and 200 mM ATP. This research suggested that AK might play an important role in the coupling of energy production and utilization and the immune response in shrimps. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Zhikong scallop (Chlamys farreri) is an economically important aquaculture species in China; however, frequent mass mortality seriously affects the development of its industry. Genetic linkage map is useful for genetic improvement and selective breeding of C. farreri. Linkage maps were constructed using an intraspecific F-1 cross and amplified fragment length polymorphism (AFLP) markers. Thirty-two selected AFLP primer combinations produced 545 AFLP markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 166 were mapped to 19 linkage groups of the female framework map, covering a total of 1503.9 cM, with an average marker spacing of 10.2 cM; and 197 markers were assigned to 20 linkage groups of the male map, covering a total of 1630.7 cM, with 9.2 cM per marker. A sex-linked marker was mapped on the female map with zero recombination and a LOD of 27.3. The genetic length of C farreri genome was estimated as 1889.0 cM for the female and 1995.9 cM for the male. The coverage of the framework map was calculated as 79.6% for the female and 81.7% for the male. When the triplets and doublets were considered, the observed length of the map was calculated as 1610.2 cM with coverage of 85.2% for the female, and 1880.5 cM with coverage of 94.2% for the male. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map and mapping of economically important genes. (C) 2004 Published by Elsevier B.V.
Resumo:
Arginine kinase (AK) was previously reported as a phosphagen-ATP phosphotransferase found in invertebrates. In this study, an 1184 bp cDNA was cloned and sequenced. It contained an open reading frame of 1068 bp that coded for 356 deduced amino acids of AK in Fenneropenaeus chinensis. The calculated molecular mass of AK is 40129.73 Da and pI is 5.92. The predicted protein showed a high level of identity to known AK in invertebrates and creatine kinase from vertebrates, which belong to a conserved family of ATP:guanidino phospho-transferases. In addition, AK protein in plasma of F. chinensis was identified using two-dimensional electrophoresis (2DE) and electrospray ionization mass spectrometry (ESI-MS) according to the calculated molecular mass and pI. AK was significantly decreased in the plasma of F. chinensis at 45 min and recovered at 3 It after laminarin injection as confirmed by 2DE and ESI-MS. The results showed that AK was one of the most significantly changed proteins on two-dimensional gel in the plasma proteins of F. chinensis at 45 min and 3 It after simulation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Pacific white shrimp (Litopenaeus vannamei) is the leading species farmed in the Western Hemisphere and an economically important aquaculture species in China. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP) and microsatellite markers. One hundred and eight select AFLP primer combinations and 30 polymorphic microsatellite markers produced 2071 markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 319 were mapped to 45 linkage groups of the female framework map, covering a total of 4134.4 cM; and 267 markers were assigned to 45 linkage groups of the male map, covering a total of 3220.9 cM. High recombination rates were found in both parental maps. A sex-linked microsatellite marker was mapped on the female map with 6.6 cM to sex and a LOD of 17.8, two other microsatellite markers were also linked with both 8.6 cM to sex and LOD score of 14.3 and 16.4. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map, quantitative trait loci (QTLs) detection, marker-assisted selection (MAS) and comparative genome mapping.
Resumo:
Proteins of the DYRK (dual-specificity tyrosine-phosphorylation-regulated kinase) family are characterized by the presence of a conserved kinase domain and N-terminal DH box. DYRK2 is involved in regulating key developmental and cellular processes, such as neurogenesis, cell proliferation, cytokinesis, and cellular differentiation. Herein, we report that the ortholog of DYRK2 found in zebrafish shares about 70% identity with that of human, mouse, and chick. RT-PCR showed that DYRK2 is expressed maternally and zygotically. In-situ hybridization results show that DYRK2 is expressed in somite cells that will develop into muscles. Our results provide preliminary evidence for investigating the in-vivo function of DYRK2 in zebrafish muscle development.
Resumo:
A large number of polymorphic simple sequence repeats (SSRs) or microsatellites are needed to develop a genetic map for shrimp. However, developing an SSR map is very time-consuming, expensive, and most SSRs are not specifically linked to gene loci of immediate interest. We report here on our strategy to develop polymorphic markers using expressed sequence tags (ESTs) by designing primers flanking single or multiple SSRs with three or more repeats. A subtracted cDNA library was prepared using RNA from specific pathogen-free (SPF) Litopenaeus vannamei juveniles (similar to 1 g) collected before (0) and after (48 h) inoculation with the China isolate of white spot syndrome virus (WSSV). A total of 224 clones were sequenced, 194 of which were useful for homology comparisons against annotated genes in NCBI nonredundant (nr) and protein databases, providing 179 sequences encoded by nuclear DNA, 4 mitochondrial DNA, and 11 were similar to portions of WSSV genome. The nuclear sequences clustered in 43 groups, 11 of which were homologous to various ESTs of unknown function, 4 had no homology to any sequence, and 28 showed similarities to known genes of invertebrates and vertebrates, representatives of cellular metabolic processes such as calcium ion balance, cytoskeleton mRNAs, and protein synthesis. A few sequences were homologous to immune system-related (allergens) genes and two were similar to motifs of the sex-lethal gene of Drosophila. A large number of EST sequences were similar to domains of the EF-hand superfamily (Ca2+ binding motif and FRQ protein domain of myosin light chains). Single or multiple SSRs with three or more repeats were found in approximately 61 % of the 179 nuclear sequences. Primer sets were designed from 28 sequences representing 19 known or putative genes and tested for polymorphism (EST-SSR marker) in a small test panel containing 16 individuals. Ten (53%) of the 19 putative or unknown function genes were polymorphic, 4 monomorphic, and 3 either failed to satisfactorily amplify genomic DNA or the allele amplification conditions need to be further optimized. Five polymorphic ESTs were genotyped with the entire reference mapping family, two of them (actin, accession #CX535973 and shrimp allergen arginine kinase, accession #CX535999) did not amplify with all offspring of the IRMF panel suggesting presence of null alleles, and three of them amplified in most of the IRM F offspring and were used for linkage analysis. EF-hand motif of myosin light chain (accession #CX535935) was placed in ShrimpMap's linkage group 7, whereas ribosomal protein S5 (accession #CX535957) and troponin I (accession #CX535976) remained unassigned. Results indicate that (a) a large number of ESTs isolated from this cDNA library are similar to cytoskeleton mRNAs and may reflect a normal pathway of the cellular response after im infection with WSSV, and (b) primers flanking single or multiple SSRs with three or more repeats from shrimp ESTs could be an efficient approach to develop polymorphic markers useful for linkage mapping. Work is underway to map additional SSR-containing ESTs from this and other cDNA libraries as a plausible strategy to increase marker density in ShrimpMap.
Resumo:
Preliminary genetic linkage maps were constructed for the Pacific abalone (Haliotis discus hannai Ino) using amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA (RAPD), and microsatellite markers segregating in a F, family. Nine microsatellite loci, 41 RAPD, and 2688 AFLP markers were genotyped in the parents and 86 progeny of the mapping family. Among the 2738 markers, 384 (including 365 AFLP markers, 10 RAPD markers, and 9 microsatellite loci) were polymorphic and segregated in one or both parents: 241 in the female and 146 in the male. The majority of these markers, 232 in the female and 134 in the male, segregated according to the expected 1:1 Mendelian ratio (alpha = 0.05). Two genetic linkage maps were constructed using markers segregating in the female or the male parent. The female framework map consisted of 119 markers in 22 linkage groups, covering 1773.6 cM with an average intermarker space of 18.3 cM. The male framework map contained 94 markers in 19 linkage groups, spanning 1365.9 cM with an average intermarker space of 18.2 cM. The sex determination locus was mapped to the male map but not to the female map, suggesting a XY-male determination mechanism. Distorted markers showing excess of homozygotes were mapped in clusters, probably because of their linkage to a gene that is incompatible between two parental populations.
Resumo:
Photodissociation dynamics of ketene following excitation at 208.59 and 213.24 nm have been investigated using the velocity map ion-imaging method. Both the angular distribution and translational energy distribution of the CO products at different rotational and vibrational states have been obtained. No significant difference in the translational energy distributions for different CO rotational state products has been observed at both excitation wavelengths. The anisotropy parameter beta is, however, noticeably different for different CO rotational state products at both excitation wavelengths. For lower rotational states of the CO product, beta is smaller than zero, while beta is larger than zero for CO at higher rotational states. The observed rotational dependence of angular anisotropy is interpreted as the dynamical influence of a peculiar conical intersection between the B-1(1) excited state and (1)A(2) state along the C-S-I coordinate.