68 resultados para Localized plasmons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localized shear deformation in the 2024 and 2124 Al matrix composites reinforced with SiC particles was investigated with a split Hopkinson pressure bar (SHPB) at a strain rate of about 2.0x10(3) s(-1). The results showed that the occurrence of localized shear deformation is sensitive to the size of SiC particles. It was found that the critical strain, at which the shear localization occurs, strongly depends on the size and volume fraction of SiC particles. The smaller the particle size, the lower the critical strain required for the shear localization. TEM examinations revealed that Al/SiCp interfaces are the main sources of dislocations. The dislocation density near the interface was found to be high and it decreases with the distance from the particles. The Al matrix in shear bands was highly deformed and severely elongated at low angle boundaries. The Al/SiCp interfaces, particularly the sharp corners of SiC particles, provide the sites for microcrack initiation. Eventual fracture is caused by the growth and coalescence of microcracks along the shear bands. It is proposed that the distortion free equiaxed grains with low dislocation density observed in the center of shear band result from recrystallization during dynamic deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of damage accumulation and corresponding failure evolution are prerequisite for effective maintenance of civil engineering so as to avoid disaster. Based on statistical mesoscopic damage mechanics, it was revealed that there are three stages in the process of deformation, damage and failure of multiscale heterogeneous elastic-brittle medium. These are uniformly distributed damage, localized damage and catastrophic failure. In order to identify the transitions from scattering damage to macroscopically localized one, a condition for damage localization was given. The experiments of rock under uniaxial compression with the aid of observations of acoustic emission and speckle correlation do support the concept of localization. This provides a potential approach to properly evaluate damage accumulation in practice. In addition, it is found in the experiments that catastrophic failure displays critical sensitivity. This gives a helpful clue to the prediction of catastrophic failure. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to explore a prior warning to catastrophic rupture of heterogeneous media, like rocks, the present study investigates the relationship between surface strain localization and catastrophic rupture. Instrumented observations on the evolution of surface strain field and the catastrophic rupture of a rock under uniaxial compression were carried out. It is found that the evolution of surface strain field displays two phases: at the early stage, the strain field keeps nearly uniform with weak fluctuations increasing slowly; but at the stage prior to catastrophic rupture, a certain accelerating localization develops and a localized zone emerges. Based on the measurements, an analysis was performed with local mean-field approximation. More importantly, it is found that the scale of localized zone is closely related to the catastrophic rupture strain and the rupture strain can be calculated in accord with the local-mean-field model satisfactorily. This provides a possible clue to the forecast of catastrophic rupture. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new kind of failure mode is observed in circular brass foils whose peripheries are fixed and whose surfaces are subjected to a long pulsed laser over a central region. The failure is classified into three stages; they are referred to as thermal bulging, localized shear deformation and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. The failure mode is different from the well-known types of laser induced material damage, such as spallation, melting and/or vaporization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peripheries of circular foils of 30 mm in diameter and 0.1 mm thick are fixed while their surfaces are subjected to a long pulsed laser over a central region that may vary from 2 mm to 6 mm in diameter. Failure is observed and classified into three stages; they are referred to as thermal bulging, localized shear deformation, and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. Such a phenomenon can be expected to occur for a laser intensity threshold value of about 0.61 x 10(6) W/cm(2) beyond which local melting of the material begins to take place.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of shear bands in plane sheet is studied, both analytically and experimentally, to enhance the fundamental understanding of this phenomenon and to develop a capability for predicting material failure. The evolution of voids is measured and its interaction with the process of shear banding is examined. The evolving dilatancy in plasticity is shown to have a vital role in analysing the shear-band type of bifurcation, and tremendously reduces the theoretical value of critical stresses. The analyses, referring to both localized and diffuse modes of bifurcation, fairly explain the corresponding observations obtained through testing a dual-phase steer sheet and provide a justification of the constitutive model used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical investigation on the simple polycrystals containing three symmetrical tilt grain boundaries (GBs) is carried out within the framework of crystal plasticity which precisely considers the finite deformation and finite lattice rotation as well as elastic anisotropy. The calculated results show that the slip geometry and the redistribution of stresses arising from the anisotropy and boundary constraint play an important role in the plastic deformation in the simple polycrystals. The stress level along GB is sensitive to the load level and misorientation, and the stresses along QB are distributed nonuniformly. The GB may exhibit a softening or strengthening feature, which depends on the misorientation angle. The localized deformation bands usually develop accompanying the GB plastic deformation, the impingement of the localized band on the GB may result in another localized deformation band. The yield stresses with different misorientation angles are favorably compared with the experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A discrete slip model which characterizes the inhomogeneity of material properties in ductile single crystals is proposed in this paper. Based on this model rate-dependent finite element investigations are carried out which consider the finite deformation, finite rotation, latent hardening effect and elastic anisotropy. The calculation clearly exhibits the process from microscopic inhomogeneous and localized deformation to necking and the formation of LSBS and reveals several important features of shear localization. For example, the inhomogeneous deformation is influenced by the imperfections and initial non-uniformities of material properties. The inhomogeneous deformation may either induce necking which results in the lattice rotation and leads to geometrical softening, which in turn promotes the formation of CSBS, or induces heavily localized deformation. The microscopic localized deformation eventually develops into the LSBS and results in a failure. These results are in close agreement with experiment. Our calculations also find that the slip lines on the specimen's surface at necking become curved and also find that if the necking occurs before the formation of LSBS, this band must be misoriented from the operative slip systems. In this case, the formation of LSBS must involve non-crystallographic effects. These can also be indirectly confirmed by experiment. All these suggest that our present discrete slip model offers a correct description of the inhomogeneous deformation characterization in ductile crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new interrupting method was proposed and the split Hopkinson torsional bar (SHTB) was modified in order to eliminate the effect of loading reverberation on post-mortem observations. This makes the comparative study of macro- and microscopic observations on tested materials and relevant transient measurement of tau - gamma curve possible. The experimental results of the evolution of shear localization in in Ti-6Al-4V alloy studied with the modified SHTB are reported in the paper. The collapse of shear stress seems to be closely related to the appearance of a certain critical coalescence of microcracks. The voids may form within the localized shear zone at a quite early stage. Finally, void coalescence results in elongated cavities and their extension leads to fracture along the shear band.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vorticity dynamics of two-dimensional turbulence are investigated analytically, applying the method of Qian (1983). The vorticity equation and its Fourier transform are presented; a set of modal parameters and a modal dynamic equation are derived; and the corresponding Liouville equation for the probability distribution in phase space is solved using a Langevin/Fokker-Planck approach to obtain integral equations for the enstrophy and for the dynamic damping coefficient eta. The equilibrium spectrum for inviscid flow is found to be a stationary solution of the enstrophy equation, and the inertial-range spectrum is determined by introducing a localization factor in the two integral equations and evaluating the localized versions numerically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用特殊设计的“hat shape”试样,在分离式Hopkinson压杆和MTS通用材料试验机上实验研究了颗粒尺寸和应变率对颗粒增强金属基复合材料(SiC_P/6151Al)变形局部化行为的影响。结果表明:颗粒尺寸对复合材料的变形强化与变形局部化行为有显著影响。具体表现为:颗粒越小,复合材料流动应力越高,即强化效果越好;另一方面,对受载试样的微观检测发现,颗粒越小,复合材料剪切变形局部分越明显。同时发现,冲击载荷(高应变率)下复合材料更容易发生变形局部化。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, torsion fracture behavior of drawn pearlitic steel wires with different heat treatments was investigated. Samples with different heat treatments was investigated. Samples with different heat treatment conditions were subjected to torsion and tensile tests. The shear strain along the torsion sample after fracture was measured. Fracture surface of wires was examined by Scanning Electron Microscopy. In addition, the method of Differential Scanning Calorimetry was used to characterize the thermodynamic process in the heat treatment. A numerical simulation via finite element method on temperature field evolution for the wire during heat treatment process was performed. The results show that both strain aging and recovery process occur in the material within the temperature range between room temperature and 435 degrees C. It was shown that the ductility measured by the number of twists drops at short heating times and recovers after further heating in the lead bath of 435 degrees C. On the other hand, the strenght of the wire increases at short heating times and decreases after further heating. The microstructure inhomogeneity due to short period of heat treatment, coupled with the gradient characteristics of shear deformation during torsion results in localized shear deformation of the wire. In this situation, shear cracks nucleate between lamella and the wire breaks with low number of twists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an elastic and statistically brittle (ESB) model is applied to the process of damage evolution induced catastrophic rupture and the influence of localization and softening on catastrophic rupture is discussed. According to the analysis, the uncertainty of catastrophic rupture should be attributed to the unknown scale of localized zone. Based on the elastic and statistically brittle model but local mean field approximation, the relation between the scale of localized zone and catastrophic rupture is obtained and then justified with experiments. These results can not only give a deeper understanding of the mechanism governing catastrophic rupture, but also provide a possible tool to foresee the occurrence of catastrophic rupture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on mechanism of ceramic coating on Al-Si alloys with bulk primary Si using plasma electrolytic oxidation (PEO) technology. Al-Si alloys with 27-32% Si in weight were used as substrates. The morphologies, composition and microstructure of PEO coatings were investigated by scanning electron microscopy (SEM) with energy dispersive X-ray system (EDX). Results showed that the PEO process had four different stages. The effect of bulk Si is greatly on the morphology and composition of coatings at first three stages. Anodic oxide films formed on Al and Si phases, respectively. When the voltage exceeded 40 V, glow appeared and concentrated on the localized zone of interface of Al and Si phase. Al-Si-O compounds formed and covered on the dendrite Si phase surface, and the coating on bulk Si, which was silicon oxide, was rougher than that on other phase. If the treatment time was long enough, the coatings with uniform surface morphologies and elements distribution will be obtained but the microstructure of inner layer is looser due to the bulk Si.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using conventional methods, a laser pulse can be focused down to around 6-8 mu m, but further reduction of the spot size has proven to be difficult. Here it is shown by particle-in-cell simulation that with a hollow cone an intense laser pulse can be reduced to a tiny, highly localized, spot of around 1 mu m radius, accompanied by much enhanced light intensity. The pulse shaping and focusing effect is due to a nonlinear laser-plasma interaction on the inner surface of the cone. When a thin foil is attached to the tip of the cone, the cone-focused light pulse compresses and accelerates the ions in its path and can punch through the thin target, creating highly localized energetic ion bunches of high density.