94 resultados para Local Productive Arrangement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both Fourier transform infrared (FTIR) grazing incidence reflectivity and FTIR transmission methods have been used to study GaN films grown on alpha-Al2O3 (0001) substrates by atmospheric pressure metal-organic chemical vapor deposition and low pressure metal-organic chemical vapor deposition. The results show that in the frequency range from 400 to 3500 cm(-1) the signal-to-noise ratio of the FTIR grazing incidence measurement is far higher than that of the FTIR transmission measurement. Some new vibrational structures appearing in the former measurement have been discussed. The features around 1460 and 1300 cm(-1) are tentatively assigned to scissoring and wagging local vibrational modes of CH2 in GaN, respectively. (C) 1999 American Institute of Physics. [S0021-8979(99)06509-3].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN films with electron concentration ranging from n similar to 10(17) to 10(20) cm(-3) grown by metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) were investigated by variable-temperature photoluminescence and absorption measurements. The energy positions of absorption edge as well as photoluminescence peak of these InN samples with electron concentration above 10(18) cm(-3) show a distinct S-shape temperature dependence. With a model of potential fluctuations caused by electron-impurity interactions, the behavior can be quantitatively explained in terms of exciton freeze-out in local potential minima at sufficiently low temperatures, followed by thermal redistribution of the localized excitons when the band gap shrinks with increasing temperature. The exciton localization energy sigma (loc) is found to follow the n (5/12) power relation, which testifies to the observed strong localization effects in InN with high electron concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-resolution spectral measurements for new local vibrational modes near 714 cm-1 due to the oxygen defect in semi-insulating GaAs are analyzed on the basis of a model calculation by self-consistent bond orbital approach. Two charge states of oxygen atom with 1 and 2 extra electrons are assigned to be responsible for these local modes. The observed frequencies are explained by the properties of Ga-O-1 and Ga-O-2 bonds and the calculated cohesive energy indicates that the O-2 state is stable. The results are in good agreement with the kinetic analysis.