228 resultados para Linearly Lindelöf
Resumo:
The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled.
Resumo:
An analytical fluid model for JxB heating during the normal incidence by a short ultraintense linearly polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the JxB heating includes two distinct coupling processes depending on the initial laser and plasma conditions: for a moderate intensity (a <= 1), the ponderomotive force of the laser light can drive a large plasma wave at the point n(e)=4 gamma(0)n(c) resonantly. When this plasma wave is damped, the energy is transferred to the plasma. At higher intensity, the electron density is steepened to a high level by the time-independent ponderomotive force, n(e)> 4 gamma(0)n(c), so that no 2 omega resonance will occur, but the longitudinal component of the oscillating ponderomotive field can lead to an absorption mechanism similar to "vacuum heating." (c) 2006 American Institute of Physics.
Resumo:
Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.
Resumo:
提出了一种制作高频线性可变频率光栅的新方法,并给出了光栅空间频率的表达式.通过在相干的两光路中插入特殊透镜,可以实现线性可变空间频率光栅的制作,而且通过适当地调节实验参数可以改变空间频率的变化率.给出了相应的模拟全息图。
Resumo:
Uniform arrays of periodic nanoparticles with 80-nm period are formed on 6H-SiC crystal irradiated by circularly polarized 400-nm femtosecond laser pulses. In order to understand the formation mechanism, the morphology evolvement as a function of laser pulse energy and number is studied. Periodic nanoripples are also formed on the sample surface irradiated by linearly polarized 400-, 510- and 800-nm femtosecond laser pulses. All these results support well the mechanism that second-harmonic generation plays an important role in the formation of periodic nanostructures.
Resumo:
Self-trapping, stopping, and absorption of an ultrashort ultraintense linearly polarized laser pulse in a finite plasma slab of near-critical density is investigated by particle-in-cell simulation. As in the underdense plasma, an electron cavity is created by the pressure of the transmitted part of the light pulse and it traps the latter. Since the background plasma is at near-critical density, no wake plasma oscillation is created. The propagating self-trapped light rapidly comes to a stop inside the slab. Subsequent ion Coulomb explosion of the stopped cavity leads to explosive expulsion of its ions and formation of an extended channel having extremely low plasma density. The energetic Coulomb-exploded ions form shock layers of high density and temperature at the channel boundary. In contrast to a propagating pulse in a lower density plasma, here the energy of the trapped light is deposited onto a stationary and highly localized region of the plasma. This highly localized energy-deposition process can be relevant to the fast ignition scheme of inertial fusion.
Resumo:
A uniform submicron periodic square structure was fabricated on the surface of ZnO by a technique of two linearly polarized femtosecond laser beams with orthogonal polarizations ablating material alternately. The formed two-dimensional ordering submicron structure consists of close-packed submicron squares with a spacial periodicity of 290 nm, which arises from the intercrossing of two orthogonal submicron ripple structures induced by the two beams respectively. The result demonstrates a noninterference effect of two-beam ablation based on the alternate technique, which should come from the polarization-dependent enhancement of the subwavelength ripple structure and the large interval of two alternate pulses. This two-beam alternate ablation technique is expected to open up prospects for the submicron fabrication of wide-bandgap materials.
Resumo:
The interaction of an ultraintense circularly polarized laser pulse and a solid target is studied by one-dimensional particle-in-cell simulations. Ions at the front of the target are reflected by a moving quasisteady electrostatic field and obtain a relativistic velocity. At a laser intensity of 10(22) W/cm(2), almost half of the laser energy is transferred to ions and GeV ions are obtained. Effects of laser polarization state and target thickness on the laser energy conversion are investigated. It is found that a circularly polarized laser pulse can accelerate ions more efficiently than a linearly polarized laser pulse at the same laser and target parameters. A monoenergetic ion bunch is obtained for the ultrathin target, which is accelerated as a single entity. (c) 2007 American Institute of Physics.
Resumo:
激光诱导周期性纳米微结构在多种材料包括电介质、半导体、金属和聚合物中观察到。研究了800 nm和400 nm飞秒激光垂直聚焦于6H SiC晶体表面制备纳米微结构。实验观察到800 nm和400 nm线偏光照射样品表面分别得到周期为150 nm和80 nm的干涉条纹, 800 nm圆偏振激光单独照射样品表面得到粒径约100 nm的纳米颗粒。偏振相互垂直的800 nm和400 nm激光同时照射晶体得到粒径约100 nm的纳米颗粒阵列, 该纳米阵列的方向随400 nm激光强度增加而向400 nm偏振方向偏转。利
Resumo:
利用线性啁啾散射光谱测量法,研究了背压对团簇尺寸的影响以及团簇形成过程中尺寸的变化过程.同时发现低密度大尺寸团簇的形成,可以作为相关实验需要的干净且重要的团簇靶.
Resumo:
We measure the signal amplitude and linewidth of a dark line in coherent population trapping in the Rb vapour cell filled with mixed buffer gas N-2 and Ar as a function of cell temperature. We find that the dark line signal amplitude increases with temperature up to a maximum at 49 degrees C and then drops at higher temperatures due to quenching effects of N-2. The linewidth of the dark line remains basically constant, at 1080 Hz. We also measure the linewidth of the dark line as a function of laser intensity. The linewidth increases linearly with laser intensity. An intrinsic linewidth (FWHM=896 Hz at 3.4 GHz) of the Rb cell is obtained.
Resumo:
This paper has observed linewidth narrowing of dark states in rubidium cell by using the Hanle configuration. The reduction of the coherent resonance width under the transition of Rb-87 F-g = 1 -> F-e = 0 is observed and the qualitative explanation about its mechanism is presented. Multiple subnatural width dips are obtained with a linearly polarized laser beam for the transition of Rb-87 F-g = 0, 1, 2. The feature of negative and positive slope, namely dispersionlike feature, is observed in the transmitted light.
Resumo:
The single ionization of an He atom by intense linearly polarized laser field in the tunneling regime is studied by S- matrix theory. When only the first term of the expansion of the S matrix is considered and time, spatial distribution, and fluctuation of the laser pulse are taken into account, the obtained momentum distribution in the polarization direction of laser field is consistent with the semiclassical calculation, which only considers tunneling and the interaction between the free electron and external field. When the second term, which includes the interaction between the core and the free electron, is considered, the momentum distribution shows a complex multipeak structure with the central minimum and the positions of some peaks are independent of the intensity in some intensity regime, which is consistent with the recent experimental result. Based on our analysis, we found that the structures observed in the momentum distribution of an He atom are attributed to the " soft" collision of the tunneled electron with the core.
Resumo:
讨论了光学微分方法在图像深度估计问题中的应用。基于线性成像理论对Farid提出的光学微分模型进行了推广,即用于图像深度估计的两幅图像在成像过程中可以满足任意阶的线性微分关系。此模型拓宽了光学微分的概念,使两次成像之间关系有了更多的光学微分形式。围绕如何选择合适的光学微分关系以使系统的整体性能达到最优,分析了光学成像系统的参量对于图像深度估计的精度以及纵向分辨力的影响,并且对光学微分方法中的关键光学元件—光学掩模板的构建方法及优化问题也作了初步的探讨。
Resumo:
The digital holographic interferometry is used in the dynamic and static measurements of phase variation induced by domain inversion. For the first time, to the authors' knowledge, they observe the existence of ridge-shape phase distribution adjacent to 180 degrees domain wall in congruent LiNbO3 crystal. During the domain wall motion, the phase variations are not uniform but have obvious relaxations. In the static measurement, the ridge elevation can vary linearly with the uniform electric field. The reasonable assumptions are proposed to explain these effects. (c) 2006 American Institute of Physics.