100 resultados para Lightframe onsight keyspecies investigation
Resumo:
The flow structure around an NACA 0012 aerofoil oscillating in pitch around the quarter-chord is numerically investigated by solving the two-dimensional compressible N-S equations using a special matrix-splitting scheme. This scheme is of second-order accuracy in time and space and is computationally more efficient than the conventional flux-splitting scheme. A 'rigid' C-grid with 149 x 51 points is used for the computation of unsteady flow. The freestream Mach number varies from 0.2 to 0.6 and the Reynolds number from 5000 to 20,000. The reduced frequency equals 0.25-0.5. The basic flow structure of dynamic stall is described and the Reynolds number effect on dynamic stall is briefly discussed. The influence of the compressibility on dynamic stall is analysed in detail. Numerical results show that there is a significant influence of the compressibility on the formation and convection of the dynamic stall vortex. There is a certain influence of the Reynolds number on the flow structure. The average convection velocity of the dynamic stall vortex is approximately 0.348 times the freestream velocity.
Resumo:
This paper deals with in detail the permanence of the spiral structure of galaxies andthe characters of waser mechanism. A simplified model of galaxy is adopted. Variousdynamical characters of density waves are studied using numerical calculation method. Theresults verify very well the switch character f waser and the tunnel effect of density wavesat the potential barrier of corotation circle as is shown in a previous work of the author.
Resumo:
The high-speed combustible gas ignited by a hot gas jet, which is induced by shock focusing, was experimentally investigated. By use of the separation mode of shock tube, the test section of a single shock tube is split into two parts, which provide the high-speed flow of combustible gas and pilot flame of hot gas jet, respectively. In the interface of two parts of test sections the flame of jet was formed and spread to the high-speed combustible gas. Two kinds of the ignitions, 3-D "line-flame ignition" and 2-D "plane-flame ignition", were investigated. In the condition of 3-D "line-flame ignition" of combustion, thicker hot gas jet than pure air jet, was observed in schlieren photos. In the condition of 2-D "plane-flame ignition" of combustion, the delay time of ignition and the angle of flame front in schlieren photos were measured, from which the velocity of flame propagation in the high-speed combustible gas is estimated in the range of 30-90m/s and the delay time of ignition is estimated in the range of 0.12-0.29ms.
Resumo:
In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.
Resumo:
The investigation of interactions between two kinds of monoclonal antibodies and SARS virus with a label-free protein array technique were presented in this paper. The performance consists of three parts: a surface modification for ligand immobilization/surface, a protein array fabrication with an integrated microfluidic system for patterning, packaging and liquid handling, and a protein array reader of imaging ellipsometer. This revealed the technique could be used as an immunoassay for qualitative and quantitative detection as wen as kinetic analysis of biomolecule interaction.
Resumo:
Characteristics of vaporized aviation kerosene injection in a supersonic model combustor were preliminarily investigated. The electrically storage type heater has a volume capacity of heating kerosene of 0.8 kg up to 670 K at a pressure of 5.5 Mpa. The temperature to cause pressurized kerosene jet being fully vaporized in Quiescent atmosphere was found to be 550 K at 4 Mpa however the pressurized hot kerosene remains in liquid state within the tube. The correspondent jet spray in Mach 2.5 vitiated air cross-flow were visualized by using stop schlieren photograph.It was found the penetration depth of the hot pressurized kerosene jet is approximately same with the temperature varied from 290 K to 550 k. at pressure of 4 Mpa. This results showed that the atomization process of hot kerosene jet spray in supersonic combustor could be bypassed and directly transferred to be gas state at temperature 550 K and pressure of 4 Mpa.
Resumo:
Injection and combustion of vaporized kerosene was experimentally investigated in a Mach 2.5 model combustor at various fuel temperatures and injection pressures. A unique kerosene heating and delivery system, which can prepare heated kerosene up to 820 K at a pressure of 5.5 MPa with negligible fuel coking, was developed. A three-species surrogate was employed to simulate the thermophysical properties of kerosene. The calculated thermophysical properties of surrogate provided insight into the fuel flow control in experiments. Kerosene jet structures at various preheat temperatures injecting into both quiescent environment and a Mach 2.5 crossflow were characterized. It was shown that the use ofvaporized kerosene injection holds the potential of enhancing fuel-air mixing and promoting overall burning. Supersonic combustion tests further confirmed the preceding conjecture by comparing the combustor performances of supercritical kerosene with those of liquid kerosene and effervescent atomization with hydrogen barbotage. Under the similar flow conditions and overall kerosene equivalence ratios, experimental results illustrated that the combustion efficiency of supercritical kerosene increased approximately 10-15% over that of liquid kerosene, which was comparable to that of effervescent atomization.
Resumo:
In this paper,focusing of a toroidal shock wave propagating from a shock tube of an- nular cross-section into a cylindrical chamber was investigated numerically with the dispersion- controlled scheme. For CFD validation, the numerical code was rst applied to calculate both viscous and inviscid ows at a low Mach number of 1.5, which was compared with the experi- ment results and got better consistency. Then the validated code was used to calculate several cases for high Mach numbers. From the result, several major factors that in uent the ow, such as the Mach number and the viscosity, were analyzed detailedly and along with the high Mach number some unusual ow structure was observed and explained theoretically
Resumo:
In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.
Resumo:
Very-High-Cycle Fatigue (VHCF) test for a medium carbon structural steel (40Cr) has been performed and a stepwise S-N curve was obtained by employing cantilever-type rotary bending fatigue machine with hourglass shape specimen. The S-N curve was well explained as a combination of curves for surface-induced fracture and interior inclusion-induced fracture with fish-eye patterns. The morphology of the fish-eye pattern was illustrated in order to clarify subsurface crack initiation and propagation behavior.
Resumo:
The beam lattice-type models, such as the Euler-Bernoulli (or Timoshenko) beam lattice and the generalized beam (GB) lattice, have been proved very effective in simulating failure processes in concrete and rock due to its simplicity and easy implementation. However, these existing lattice models only take into account tensile failures, so it may be not applicable to simulation of failure behaviors under compressive states. The main aim in this paper is to incorporate Mohr-Coulomb failure criterion, which is widely used in many kinds of materials, into the GB lattice procedure. The improved GB lattice procedure has the capability of modeling both element failures and contact/separation of cracked elements. The numerical examples show its effectiveness in simulating compressive failures. Furthermore, the influences of lateral confinement, friction angle, stiffness of loading platen, inclusion of aggregates on failure processes are respectively analyzed in detail.
Resumo:
A "swallowtail" cavity for the supersonic combustor was proposed to serve as an efficient flame holder for scramjets by enhancing the mass exchange between the cavity and the main flow. A numerical study on the "swallowtail" cavity was conducted by solving the three-dimensional Reynolds-averaged Navier-Stokes equations implemented with a k-epsilon turbulence model in a multi-block mesh. Turbulence model and numerical algorithms were validated first, and then test cases were calculated to investigate into the mechanism of cavity flows. Numerical results demonstrated that the certain mass in the supersonic main flow was sucked into the cavity and moved spirally toward the combustor walls. After that, the flow went out of the cavity at its lateral end, and finally was efficiently mixed with the main flow. The comparison between the "swallowtail" cavity and the conventional one showed that the mass exchanged between the cavity and the main flow was enhanced by the lateral flow that was induced due to the pressure gradient inside the cavity and was driven by the three-dimensional vortex ring generated from the "swallowtail" cavity structure.