68 resultados para Latin language, Preclassical to ca. 100 B.C.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

大气臭氧的损耗导致了地球表面具有生物学效应的紫外线-B(UV-B)辐射增强。同时,大气成分变化中除了UV-B辐射增强外,氮沉降是一个新近出现而又令人担忧的环境问题,其来源和分布正在迅速扩展到全球范围,并不断向陆地和水生生态系统沉降。本试验在四川省境内的中国科学院茂县生态站内进行,以云山、冷杉、色木槭和红椋子幼苗为模式植物,从生长形态、光合作用、抗氧化能力和矿质营养等方面研究了青藏高原东缘4种树苗对全球变化-增强UV-B辐射和氮供应(氮沉降)的响应。该试验为室外盆栽试验,包括四个处理:(1)大气UV-B辐射+无额外的氮供应(C);(2)大气UV-B辐射+额外的氮供应(N);(3)增强UV-B辐射+无额外的氮供应(UV-B);(4)增强UV-B辐射+额外的氮供应(UV-B+N)。其目的:一方面有助于丰富我国对全球变化及区域响应研究的全面认识,进一步完善在全球气候变化条件下臭氧层削减和氮沉降对陆地生态系统影响的内容;另一方面,在一定程度上有助于我们更好的理解在全球变化下森林更新的早期过程。具体结果如下: 增强的UV-B辐射在生长形态、光合、抗氧化能力、活性氧和矿质营养方面对4种幼苗都有显著的影响。UV-B辐射增强对幼苗的影响不仅与物种有关,而且,还与氮营养水平相关。总体表现为,高的UV-B辐射导致了色木槭和红椋子幼苗叶片的皱缩和卷曲,并降低了色木槭幼苗的叶片数和叶重,在额外的氮供应下,云杉、冷杉和红椋子的叶重也显著地降低了;色木槭和红椋子幼苗叶片的解剖结构受到了增强的UV-B辐射的影响,增强的UV-B辐射显著地降低了色木槭叶片的栅栏组织厚度,提高了红椋子叶片的厚度;增强的UV-B辐射显著地降低了4种幼苗的单株总生物量、植物地下部分的生长、总叶绿素含量 [Chl (a + b)]、净光合速率和最大量子产量(Fv/Fm),提高了4种幼苗叶片的膜脂过氧化(MDA含量),改变了植物体不同器官中的矿质元素含量;增强的UV-B辐射提高了冷杉、色木槭和红椋子叶片中的过氧化氢含量(H2O2)、超氧负离子(O2-)生成速率,在额外的氮供应下,云杉叶片中的活性氧含量也显著地提高了;在无额外的氮供应条件下,增强的UV-B辐射显著地提高了4种幼苗叶片中的UV-B吸收物质、脯氨酸含量和抗氧化酶的活性(SOD、POD、CAT、GR和APX)。在额外的氮供应条件下,UV-B辐射的增强却显著地降低了冷杉叶片中脯氨酸含量和红椋子叶片中UV-B吸收物质含量,但是,在4种幼苗叶片中,5种抗氧化酶的活性对UV-B辐射的增强没有明显的规律性,增强的UV-B辐射显著地提高了云杉叶片中的POD、SOD和GR的活性,提高了冷杉叶片中的POD和GR活性,提高了色木槭叶片中的POD、SOD和CAT活性和红椋子幼苗叶片中的POD和SOD活性。从这些结果可知,植物在遭受高的UV-B辐射导致的过氧化胁迫时,植物体内形成了一定的保护机制,但是,这种保护不能抵抗高的UV-B辐射对植物的伤害。 额外的氮供应在生长形态、光合、抗氧化能力、活性氧和矿质营养方面对4种幼苗都有一定的影响,不同幼苗对额外的氮供应响应不同,并且受到UV-B辐射水平的影响。在当地现有的UV-B辐射水平下,额外的氮供应显著地提高了幼苗的单株总生物量、植物地下部分的生长、Chl (a + b)、净光合速率(红椋子除外)、UV-B吸收物质(冷杉除外)、脯氨酸含量(红椋子除外)和部分抗氧化酶的活性,降低了H2O2的含量、O2-的生成速率和MDA含量(红椋子除外),改变了植物体内部分矿质元素含量,显著地提高了云杉和冷杉叶片中的Fv/Fm。这些指标总体表明,在当地现有大气UV-B辐射水平下,额外的氮供应对植物的生长和发育是有利的。在增强的UV-B辐射水平下,4种幼苗的生长形态和光合大部分指标都没有受到额外氮供应的影响,额外的氮供应提高了红椋子幼苗的单株总生物量和Chl (a + b)含量,提高了冷杉和色木槭叶片中的活性氧含量和MDA含量,却降低了红椋子叶片中的活性氧含量;额外的氮供应也提高了云杉、色木槭和红椋子叶片中UV-B吸收物质和脯氨酸含量,降低了冷杉叶片中UV-B吸收物质和脯氨酸含量;在抗氧化酶活性方面,额外的氮供应降低了云杉、冷杉叶片中5种抗氧化酶的活性和红椋子叶片中POD和GR的活性,提高了色木槭叶片中的POD和SOD的活性;4种幼苗植物体内的矿质元素含量对额外的氮供应没有显著的规律性。从这些结果可知,在高的UV-B辐射下,额外的氮供应提高了云杉、冷杉和色木槭幼苗对高的UV-B辐射的敏感性,然而,额外的氮供应却促进了红椋子幼苗的生长,原因可能是,在高的UV-B辐射下,额外的氮供应增加了红椋子叶片的厚度、叶重和叶片数,降低了叶片中活性氧含量的结果。表明在高的UV-B辐射水平下,额外的氮供应降低了红椋子幼苗对高的UV-B辐射的敏感性。 在全球变化的趋势下,UV-B辐射增强和氮沉降可能同时存在,我们的研究表明,与大气UV-B辐射+无额外的氮供应处理相比,增强UV-B辐射+额外的氮供应处理显著地降低了幼苗的单株总生物量(红椋子除外)、Chl (a + b)、净光合速率、Fv/Fm(冷杉除外)和MDA含量(红椋子除外),提高了活性氧含量 (云杉除外)、UV-B紫外吸收物质含量(冷杉除外)、脯氨酸含量和部分抗氧化酶的活性,改变了植物体不同器官中的矿质元素含量。结果表明,在当地现有条件下,全球变化(UV-B辐射增强和氮沉降)对云杉、冷杉和色木槭幼苗的生长是不利,尽管植物体内一些抗氧化性指标提高了,然而,却对红椋子幼苗的单株总生物量的累积没有显著的影响。 The depletion of the ozone led to the increase of ultraviolet-B (UV-B) with biological effects in the earth’s surface. At the same time, except for enhanced UV-B radiation, nitrogen deposition was an anxious environmental problem at present, rapidly expanding to the global scope and continuously depositing to land and aquatic ecosystem. The experiment was conducted in Maoxian Ecological Station of Chinese Academy of Sciences, Sichuan province, China. Picea asperata, Abies faxoniana, Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings were selected as model plants to assess the effects of enhanced UV-B radiation and supplemental nitrogen supply on growth, morphological, photosynthesis, antioxidant and mineral nutrient traits of 4 species seedlings in east Qinghai-Tibetan Plateau. The experiment was potted outdoor, including 4 treatments: (1) ambient UV-B without supplemental nitrogen (control, C); (2) ambient UV-B with supplemental nitrogen (N); (3) enhanced UV-B without supplemental nitrogen (UV-B); (4) enhanced UV-B with supplemental nitrogen (UV-B+N). One hand, it was helpful for enriching our country to comprehensive understanding of the researches in the global change and the region response, further perfecting the effects of the depleted ozone layer and nitrogen deposition on land ecosystem under the global change; the other hand, it was favorable for us to better understanding of the early process of forest renews under the global change. The results were as follows: Enhanced UV-B radiation had significant effects on 4 species seedlings in growth, morphological, photosynthesis, antioxidant and mineral nutrient traits of 4 species seedlings. The effects of enhanced UV-B on plants were not only related with species, but also related with nitrogen nutrient level. Generally, the increase of UV-B radiation led to the shrinkage and curl of leaves in Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, and reduced the number of leaf and leaf weight of Acer mono Maxim seedlings, under supplemental nitrogen supply, leaf weight of Picea asperata, Abies faxoniana and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings significantly also reduced; the anatomical features of leaf in Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings affected by enhanced UV-B radiation, the increase of UV-B radiation markedly reduced the palisade tissue thickness of Acer mono Maxim leaf and enhanced the leaf thickness of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings; the enhanced UV-B radiation significantly reduced total biomass per plant of 4 species seedlings, the growth of the underground parts, Chl (a + b), net photosynthetic rate and maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA content) and changed the content of mineral elements in different parts of plants; the enhanced UV-B radiation also increased the rate of superoxide radical (O2-) production and hydrogen peroxide (H2O2) content in leaves of Abies faxoniana, Acer mono Maxim, Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, under supplemental nitrogen supply, the reactive oxygen species in leaves of Picea asperata seedlings also significantly increased by enhanced UV-B radiation; under without supplemental nitrogen supply, enhanced UV-B radiation evidently induced an increase in UV-B absorbing compounds, proline content and the activities of antioxidant enzymes (SOD, POD, CAT, GR and APX) of leaves in 4 species seedlings. Under supplemental nitrogen supply, enhanced UV-B radiation induced a decrease in proline content of leaves in Abies faxoniana seedlings and UV-B absorbing compounds of leaves in Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, but, there were no obvious rules in the activities of five antioxidant enzymes of 4 species seedling leaves to enhanced UV-B radiation, enhanced UV-B radiation significantly increased the activities of POD, SOD and GR in Picea asperata leaves, the activities of POD and GR in Abies faxoniana leaves and the activities of POD, SOD and CAT in Acer mono Maxim leaves. The results indicated that some protective mechanism was formed when plants were exposed to enhanced UV-B radiation, but the protection could not counteract the harm of high UV-B radiation on plants. Supplemental nitrogen supply had some effects on 4 species seedlings in growth, morphological, photosynthesis, antioxidant and mineral nutrient traits. The response of 4 species seedlings was different to supplemental nitrogen supply, and was affected by UV-B levels. Under local ambient UV-B radiation, supplemental nitrogen supply significantly increased the total biomass per plant, the growth of underground parts, Chl (a + b), net photosynthetic rate (except for Acer mono Maxim seedlings), UV-B absorbing compounds (except for Abies faxoniana seedlings), proline content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings) and the activities of some antioxidant enzymes, and reduced H2O2 content, the rate of O2- production and MDA content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings) and changed the content of mineral elemental in different parts; supplemental nitrogen supply also evidently increased Fv/Fm in Picea asperata and Abies faxoniana seedlings. These results indicated that supplemental nitrogen supply was favorable for the growth of plants under local ambient UV-B radiation. Under enhanced UV-B radiation, mostly parameters in growth and morphology of 4 species seedlings were not affected by supplemental nitrogen supply. Supplemental nitrogen supply increased the total biomass per plant and Chl (a + b) of Swida hemsleyi (Schneid. et Wanger.) Sojak seedling, increased the reactive oxygen species and MDA content in Abies faxoniana and Acer mono Maxim leaves, and reduced the reactive oxygen species in Swida hemsleyi (Schneid. et Wanger.) Sojak leaves; supplemental nitrogen supply also increased UV-B absorbing compounds and proline content in Picea asperata, Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak leaves, decreased UV-B absorbing compounds and proline content in Abies faxoniana leaves; in the activities of antioxidant enzymes, supplemental nitrogen supply significantly reduced the activities of antioxidant enzymes in Picea asperata and Abies faxoniana leaves and the activities of POD and GR in Swida hemsleyi (Schneid. et Wanger.) Sojak leaves, and increased the activities of POD and SOD in Acer mono Maxim leaves; the content of mineral elements in 4 species seedlings was no significantly rule to supplemental nitrogen supply. We knew from the results, under enhanced UV-B radiation, supplemental nitrogen supply made Picea asperata, Acer faxoniana and Acer mono Maxim seedlings more sensitivity to enhanced UV-B radiation, however, accelerated the growth of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings. The reason was probably that supplemental nitrogen supply increased the leaf thickness, leaf weight and leaf number, reduced the reactive oxygen content of leaf in Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings grown under high UV-B radiation. This showed that supplemental nitrogen supply reduced the sensitivity of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings to high UV-B radiation. Under the tendency of the global change, enhanced UV-B radiation and nitrogen deposition may probably coexist. The results showed, compared with the treatment of ambient UV-B radiation without supplemental nitrogen supply, the treatment of enhanced UV-B radiation with supplemental nitrogen supply significantly reduced the total biomass per plants (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings), Chl (a + b), net photosynthetic rate, Fv/Fm and MDA content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings), and increased reactive oxygen content (except for Picea asperata seedlings), UV-B absorbing compounds (except for Abies faxoniana seedlings), proline content and part antioxidant enzymes, and changed the content of mineral elements of different parts. The results indicated that the global change (enhanced UV-B and nitrogen deposition) were not favorable for the growth of plants under local ambient UV-B radiation and nitrogen nutrient level,, though increased some antioxidant indexes, however, the treatment of enhanced UV-B with supplement nitrogen supply did not significantly affect on the biomass accumulation of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

光是植物赖以生存的重要环境因子,但是植物在获得光的同时不可避免的会受到紫外辐射的伤害。尤其是近年来,人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。而另一方面,植物对UV-B辐射反应的敏感性在种间和品种间存在差异,主要受植物基因型,生态型和生活型的控制。本项目分别以粗枝云杉和青杨组杨树为模式植物,从形态和生理生化方面分别研究了来自不同水分背景下的粗枝云杉种群和来自不同UV-B背景下的青杨种群在增强UV-B下的反应及其反应差异,并探讨了干旱、喷施外源脱落酸(ABA)对它们抗UV-B能力的影响。研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. 粗枝云杉的两个种群,湿润种群(来自四川黑水)和干旱种群(来自甘肃迭部)在水分良好和干旱状况下表现出对增强UV-B的不同响应。同时,干旱对粗枝云杉抗UV-B能力的影响也得到研究:两种胁迫共同作用时,干旱表现出在一定程度上减弱了增强UV-B对粗枝云杉的生理特性的影响。 干旱胁迫显著降低了两个粗枝云杉种群的光合同化速率(A), 气孔导度(gs)和PSII的有效光量子产量(Y), 同时,提高了非光化学猝灭效率(qN)和超氧化物歧化酶(SOD)的活性。与湿润种群相比,干旱种群抗旱性更强,表现为干旱种群拥有更高的SOD和干旱进一步加剧了UV-B的胁迫效应。 本研究中,干旱胁迫单独作用时,显著降低了青杨两个种群的生物量积累和气体交换,具体包括A、gs、蒸腾速率(E)和光合氮利用效率(PNUE),提高了两个种群的瞬时水分利用效率(WUEi)、长期水分利用效率(WUET)、碳同位素组分(δ13C)和氮含量(N)。同时,UV吸收物质和ABA含量也得到积累。另一方面,增强UV-B对青杨两个种群各个指标的影响,同干旱所引起的效应有着相似的趋势。同低海拔种群相比,高海拔种群有着更强的抗旱和抗UV-B能力,具体表现在高海拔种群有着更多的生物量积累,更强的气体交换和水分利用效率及更高水平的ABA和UV吸收物质含量。相比干旱诱导的生物量积累和气体交换的降低,在干旱和增强UV-B两个胁迫同时作用于青杨时,这种降低表现的更为明显。显著的干旱和UV-B的交互作用还表现在WUEi, WUET, δ13C, 可溶性蛋白含量, UV吸收物质含量, ABA, 叶片和茎中的N含量以及C/N比中。 3. 经过一个生长季的试验观察,增强UV-B、外源ABA及两因子共同作用对青杨的生物量积累、气体交换、内源ABA和UV吸收物质含量、抗氧化系统以及碳、氮含量和碳/氮比均产生显著影响。本试验中,青杨的两个种群分别来自中国西南部的不同海拔地区,高海拔种群来自青海大通而低海拔种群来自四川九寨。外源ABA的胁迫为直接喷施ABA到青杨叶片,而增强UV-B胁迫是利用平方波系统分别保证青杨苗暴露于外界UV-B强度和两倍于外界UV-B强度下。 研究结果显示,增强UV-B显著的降低了两个青杨种群的株高、基茎、总叶面积和总生物量等生长指标,同时也导致其A、gs、E和叶片中碳含量的减少。而显著增加了SOD和过氧化物酶(GPx)活性水平,诱导了过氧化氢(H2O2)和MDA的显著增加,促进了UV吸收物质和不同器官中内源ABA含量的显著积累。另一方面,外源ABA引起了青杨光合同化速率的下降,SOD和GPx酶活性的增强,H2O2 和 MDA含量也表现出显著增加,同时,内源ABA含量得到显著累积。同低海拔种群相比,高海拔种群具有更加抗UV-B和外源ABA的特性。显著的UV-B和ABA的交互作用表现在A, E, SOD和GPx活性,以及叶片和根部的内源ABA等一系列指标中。在所有胁迫下,叶片中的碳和氮含量同其在茎和根中的含量显著相关,另外,叶片和茎中的氮含量同茎中的碳含量显著相关。 Sunlight is an indispensable environment factor for plants survival and development. Meanwhile, photosynthetic organisms need sunlight and are thus, inevitably, exposed to UV radiation. Especially for recent years, ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. On the other hand, the sensitivity of plants to UV-B radiation depends on the species, developmental stage and experimental conditions. In this experiment, two populations of Picea asperata Mast from different water background and two populations of Populus cathayana Rehder from different altitude background were selected as model plants to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B in each plant species were observed and the different responses were discussed, furthermore the influences of drought and exogenous ABA on responses induced by enhanced UV-B were studied. The study could provide a strong theoretical evidence and scientific direction for the afforestation and rehabilitation of ecosystem. The results are as follows: 1. Different responses of two contrasting Picea asperata Mast. populations to enhanced ultraviolet-B (UV-B) radiation under well-watered and drought conditions were investigated. And the effects of enhanced UV-B on tolerance of drought were also observed in our study that the UV-B exposure may have alleviated some of the damage induced by drought. Two contrasting populations, originating from a wet and dry climate region in China, respectively, were employed in our study. Drought significantly decreased CO2 assimilation rate (A), stomatal conductance (gs) and effective PSII quantum yield (Y), while it significantly increased non-photochemical quenching (qN) and the activity of superoxide dismutase (SOD) in both populations. Compared with the wet climate population, the dry climate population was more acclimated to drought stress and showed much higher activities of SOD and ascorbate peroxidase (APX), and much lower levels of malondialdehyde (MDA) and electrolyte leakage. On the other hand, enhanced UV-B radiation also induced a significant decrease in the chlorophyll (Chl) content in both populations under well-watered conditions, and a significant increase in UV-absorbing compounds in the wet climate population. After one growing season of exposure to different UV-B levels and watering regimes, the increases in MDA and electrolyte leakage, as induced by drought, were less pronounced under the combination of UV-B and drought. In addition, an additive effect of drought and UV-B on A and gs was observed in the wet climate population, and on the activity of APX and qN in the dry climate population. 2. The significant effects of drought, enhanced UV-B radiation and their combination on Populus cathayana Rehd. growth and physiological traits were investigated in two populations, originating from high and low altitudes in south-west China. Our results showed that UV-B acts as an important signal allowing P. cathayana seedlings to respond to drought and that the combination of drought and UV-B may cause synergistically detrimental effects on plant growth in both populations. In both populations, drought significantly decreased biomass accumulation and gas exchange parameters, including A, gs, E and photosynthetic nitrogen use efficiency (PNUE). However, instantaneous water use efficiency (WUEi), transpiration efficiency (WUET), carbon isotope composition (δ13C) and nitrogen (N) content, as well as the accumulation of soluble protein, UV-absorbing compounds and abscisic acid (ABA) were significantly increased by drought. On the other hand, cuttings from both populations, when kept under enhanced UV-B radiation conditions, showed very similar changes in all above-mentioned parameters, as induced by drought. Compared with the low altitude population, the high altitude population was more tolerant to drought and enhanced UV-B, as indicated by the higher level of biomass accumulation, gas exchange, water-use efficiency, ABA concentration and UV-absorbing compounds. After one growing season of exposure to different UV-B levels and watering regimes, the decrease in biomass accumulation and gas exchange, induced by drought, was more pronounced under the combination of UV-B and drought. Significant interactions between drought and UV-B were observed in WUEi, WUET, δ13C, soluble protein, UV-absorbing compounds, ABA and in the leaf and stem N, as well as in the leaf and stem C/N ratio. 3. During one growing season, significant effects induced by enhanced UV-B radiation, exogenous ABA and their combination on biomass accumulation, gas exchange, endogenous ABA and UV-absorbing compounds concentrations, antioxidant system as well as carbon (C) content, nitrogen (N) content and C/N ratio were investigated in two contrasting Populus cathayana populations, originating from high and low altitudes in south-west China. Exogenous ABA was sprayed to the leaves and enhanced UV-B treatment was using a square-wave system to make the seedlings under ambient (1×) or twice ambient (2×) doses of biologically effective UV-B radiation (UV-BBE). Enhanced UV-B radiation significantly decreased height, basal diameter, total leaf area, total biomass, A, gs, E and carbon (C) content in leaves, and significantly increased activities of SOD and guaiacol peroxidase (GPx), hydrogen peroxide (H2O2) and malonaldehyde (MDA) content as well as the accumulation of UV-absorbing compounds and endogenous ABA concentrations among different organs in both populations. In contrast, exogenous ABA showed significant decrease in A and significant increases in activities of SOD and GPx, H2O2, MDA content and the endogenous ABA concentrations. Compared with the low altitude population, the high altitude population was more tolerant to enhanced UV-B and exogenous ABA. Significant interactions between UV-B and ABA were observed in A, E, activities of SOD and GPx, as well as in endogenous ABA in leaves and roots of both populations. Across all treatments, C and N content in leaves was strongly correlated with those were in stems and roots, respectively. Additionally, leaf and stem N content were significant correlated with stem C content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

高等植物种子胚乳贮藏蛋白是种子发芽时的主要氮源,也是人类和动物食用植物蛋白的主要来源。大麦种子胚乳贮藏蛋白主要是醇溶蛋白(hordeins),占大麦胚乳总蛋白的50–60%。根据大麦醇溶蛋白的大小和组成特点,大麦醇溶蛋白被划分为三种类型:富硫蛋白亚类(B,γ-hordeins)、贫硫蛋白亚类(C-hordeins)以及高分子量蛋白亚类(D-hordeins)。B组和C组醇溶蛋白是大麦胚乳的两类主要贮藏蛋白,它们分别占大麦总醇溶蛋白成分的70–80%和10–12%。遗传分析表明,大麦B、C、D和γ-组醇溶蛋白分别是由位于大麦第五染色体1H(5)上的Hor2、Hor1、Hor3和Hor5位点编码。Hor2位点编码大量分子量相同但组成不同的B组醇溶蛋白(B-hordein)。B-hordein的种类、数量和分布是影响大麦酿造、食用及饲养品质的重要因素之一。为深入了解B-hordein基因家族的结构和染色体组织,探明Hor2位点基因表达的发育调控机制,最终达到改良禾谷类作物籽粒品质的目的,本研究以青藏高原青稞为材料,采用同源克隆法,分别克隆B-hordein基因和启动子,通过原核生物表达验证B-hordein基因功能,并利用实时定量PCR探索B-hordein基因表达时空关系,取得如下研究结果: 1. 以具有特殊B组醇溶蛋白亚基组成的9份青藏高原青稞为材料,根据GenBank中三个B-hordein基因序列(GenBank No. X03103, X53690和X53691)设计一对引物,通过PCR扩增,获得23个B-hordein基因克隆并对其进行了序列分析。核苷酸序列分析表明,所有克隆均包含完整的开放阅读框。有11个克隆都存在一个框内终止密码子,推测这11个克隆可能是假基因。推测的氨基酸序列分析表明,所有大麦B-hordein具有相似的蛋白质基本结构,均包括一个高度保守的信号肽、中间重复区以及C-端结构域。不同大麦种重复区内重复基元的数目有较大差异。青稞材料Z07–2和Z26的B-hordeins仅具有12个重复基元结构,更接近于野生大麦。这些重复基元数目的差异导致了重复区序列长度和结构的变异。这种现象极可能是由于醇溶谷蛋白基因在进化过程中染色体的不平衡交换或复制滑动所造成的。对所克隆基因和禾本科代表性醇溶谷蛋白基因进行聚类分析,结果表明所有来自栽培大麦的B-hordeins聚类成一个亚家族,来自野生大麦的B-hordeins以及普通小麦的LMW-GS聚类成另外一个亚家族,表明这两个亚家族的成员存在显著差异。此外,我们发现B-hordein基因推测的C-末端序列具有一些有规律的特征:即具有相同C-末端序列的B-hordein基因在系统发生树中聚类为同一个亚组(除BXQ053,BZ09-1,BZ26-5分别单独聚为一类外)。这个特征将有助于我们对所有B组醇溶蛋白基因家族成员进行分类,避免了在SDS-PAGE电泳图谱上仅依靠大小分类的局限性。 2. 根据上述克隆的青稞B-hordein基因的5’端序列设计三条基因特异的反向引物,以青稞Z09和Z26的基因组DNA为模板,采用SON-PCR和TAIL-PCR技术分离克隆出8个B-hordein基因的上游调控序列(命名为Z09P和Z26P)。序列分析表明,推测的TATA box位于–80 bp,CAAT–like box位于–140 bp处。此外,Z09P和Z26P中有六个序列在–300 bp处均存在一个由高度保守的EM基序和类GCN4基序构成的胚乳盒(Endosperm Box,EB),在约–560 bp处存在一个胚乳盒类似结构。而Z09P-2和Z26P-3不存在保守的胚乳盒或其类似结构,预示着这两个启动子所调控的基因表达可能受不同类型反式作用因子的调节,推测该启动子对基因的表达调控具有多样性。 3. 将B-hordein基因的开放阅读框定向克隆到表达载体pET-30a中,将其导入大肠杆菌表达菌株BL21中进行外源基因的诱导表达以验证所克隆基因的功能。结果表明仅含重组子pET-BZ07-2和pET-BZ26-5的BL21细菌有目的表达蛋白产生。在诱导3 h时的蛋白表达量最高;3 mM IPTG诱导的蛋白表达量要高于1 mM IPTG诱导的表达量。这为分离纯化B-hordein蛋白以及进一步研究其对大麦籽粒品质的影响奠定基础。 4. 根据从青稞Z09和Z26中分离克隆的B-hordein基因序列设计一对基因特异的引物,同时,选择大麦α-微管蛋白基因(GenBank no. U40042)为看家基因并设计特异引物,利用实时荧光定量PCR检测了青稞籽粒4个胚乳发育时间段的B-hordein基因表达,荧光定量结果显示:两份材料中B-hordein基因的表达量均随发育过程的进行而逐渐升高。Z09中B-hordein基因在开花后7天开始转录,而Z26开花4天后就有低水平B-hordein的表达,这表明Z26中B-hordein基因可能比Z09表达的较早或者Z09中B-hordein基因表达水平较低以致于不能被检测到。此外,在4个不同的胚乳发育时期中,Z26中B-hordein基因的表达量均高于Z09材料。在开花12天到18天的过程中,Z09和Z26中B-hordein基因的表达水平有一个急剧性的升高。这说明在不同胚乳发育时期,Hor2位点的B-hordein等位基因变异体存在mRNA的差异表达。 Seed endosperm storage proteins in higher plants are the main resources of nitrogen for germinating and plant proteins for human and animals. Barley prolamins (also called hordeins) are the major storage proteins in the endosperm and account for 50–60% of total proteins. Hordeins are classically divided into three groups: sulphur-rich (B, γ-hordeins), sulphur-poor (C-hordeins) and high molecular weight (HMW, D-hordeins) hordeins based on the size and composition. B-hordeins and C-hordeins are two major groups and each respectively account for about 70-80% and 10-12% of the total hordein fraction in barley endosperm. Genetic analysis showed that B-, C-, C-, γ-hordeins are encoded by Hor2, Hor1, Hor3 and Hor5 locus on the chromosome 1H (5). Hor2 locus is rich in alleles that encode numerous heterogeneous B-hordein polypeptides. It is reported that B-hordein species, quantity and distribution are significant factors affecting malting, food and feed quality of barley. To understand comprehensively the structure and organization of B-hordein gene family in hull-less barley and explore the developmental control mechanisms of Hor2 locus gene expression and eventually to better exploitation in crop grain quality improvement, we isolated and cloned B-hordein genes and promotors of hull-less barley from Qinghai-Tibet Plateau by PCR, and testified their expression founction in bacteria expression system and explore their spatial and temporal expression pattern by quantitative real time PCR. Our results are as followed, 1. Twenty-three copies of B-hordein gene were cloned from nine hull-less barley cultivars of Qinghai-Tibet Plateau with special B-hordein subunits and molecularly characterized by PCR, based on three B-hordein genes published previously (GenBank No. X03103, X53690 and X53691). DNA sequences analyses confirmed that the six clones all contained a full-length coding region of the barley B-hordein genes. Eleven clones all contain an in-frame stop codon and they are probably pseudogenes. The analysis of deduced amino acid sequences of the genes shows that they have similar structures including signal peptide domain, central repetitive domain, and C-terminal domain. The number of the repeats was largerly variable and resulted in polypeptides in different sizes or structures among the genes. Twelve such repeated motifs were found in Z07–2 and Z26, and they are close to those of the wild barleys, and it is most probably caused by unequal crossing-over and/or slippage during replication as suggested for the evolution of other prolamins. The relatedness of prolamin genes of barley and wheat was assessed in the phylogenetic tree based on their polypeptides comparison. Our phylogenetic analysis suggested that the predicted B-hordeins of cultivated barley formed a subfamily, while the B-hordeins of wild barleys and the two most similar sequences of LMW-GS of T. aestivum formed another subfamily. This result indicated that the members of the two subfamilys have a distinctive difference. In addition, we found the B-hordeins with identical C-terminal end sequences were clustered into a same subgroup (except BXQ053,BZ09-1 and BZ26-5 as a sole group, respectively), so we believe that B-hordein gene subfamilies possibly can be classified on the basis of the conserved C-terminal end sequences of predicted polypeptide and without the limit of SDS-PAGE protein banding patterns. 2. The specific primers were designed according to the published sequences of barley B-hordein genes from Z09 and Z26. Using total DNA isolated from them as the templates, eight clones (designated Z09Pand Z26P) of upstream sequences of the known B-hordein genes was obtained by TAIL-PCR and SON-PCR. Sequences analysis shows that the putative TATA box was present at position –80 bp and CAAT-like box at position –140 bp. Besides, a putative Endosperm Box including an Endosperm Motif (EM) and a GCN4-Like Motif was found at position –300 bp in six clones, and another Endosperm-like box was found at positon –560 bp. While the Endosperm Box or Endosperm-like box was not found in Z09P-2 and Z26P-3. This may indicate that gene expression drived by the two promtors was probably controlled by different trans-acting factors and the genetic control mechanism of corresponding gene expression may be diverse. 3. The B-hordein genic region coding for the mature peptide was cloned into expression vector pET-30a and transformed into bacterial strain BL21 for identifying gene expression fountion. Protein SDS–PAGE analysis showed that only the transformed lysate with the pET-BZ07-2 and pET-BZ26-5 constructs produced proteins related to B-group hordeins of barley, and the mounts of proteins induced by 3 mM IPTG and 3 h were higher than other conditions. This established a base for isolating and putifying B-hordein and further exploring their effects on barley grain quality. 4. The gene-specific primers of B-hordein genes from Z09 and Z26 were used for the quantification of B-hordein gene expression. The α-tubulin gene from Hordeum vulgare subsp. vulgare (GenBank accession number U40042) was used as a control gene. The result shows the transcription of the B-hordein genes in Z09 was found 7 days after flowering, while the transcription of the B-hordein genes in Z26 was found 4 days after flowering, but at a very low level, and it suggested that the B-hordein genes in Z26 probably expressed earlier than those in Z09, or the B-hordein genes in Z09 expressed at so a lower level than Z26 that it can not detected. In addition, B-hordein genes in Z26 accession showed higher expression levels than those in Z09 in four developing stages. Furthermore, a progressive increase in the expression levels of the B-hordein genes between 12 and 18 days after anthesis was observed in both Z09 and Z26. It implies that the B-hordein allelic variants encoded by Hor2 locus exist the differential expression in mRNA levels of during barley endosperm development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the large acceptance apparatus FOPI, we study central collisions in the reactions (energies in A GeV are given in parentheses): Ca-40 + Ca-40 (0.4, 0.6, 0.8, 1.0, 1.5, 1.93), Ni-58 + Ni-58 (0.15, 0.25, 0.4), Ru-96+Ru-96 (0.4, 1.0. 1.5), (96)zr+(96)zr 1.0, 1.5), Xe-129+CsI (0.15, 0.25, 0.4), Au-197 + Au-197 (0.09, 0.12, 0.15, 0.25, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5). The observables include cluster multiplicities, longitudinal and transverse rapidity distributions and stopping, and radial flow. The data are compared to earlier data where possible and to transport model simulations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yields, correlation shapes, and mean transverse momenta p(T) of charged particles associated with intermediate-to high-p(T) trigger particles (2.5 < p(T) < 10 GeV/c) in d + Au and Au + Au collisions at root s(NN) = 200 GeV are presented. For associated particles at higher p(T) greater than or similar to 2.5 GeV/c, narrow correlation peaks are seen in d + Au and Au + Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle pT < 2 GeV/c, a large enhancement of the near- (Delta phi similar to 0) and away-side (Delta phi similar to pi) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au + Au collisions compared to d + Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at Delta phi similar to pi in central Au + Au collisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica-based functionalized terbium fluorescent nanoparticles were prepared, characterized and developed as a fluorescence probe for antibody labeling and time-resolved fluoroimmunoassay. The nanoparticles were prepared in a water-in-oil (W/O) microemulsion containing a strongly fluorescent Tb3+ chelate. N,N.N-1,N-1-12,6-bis(3'-aminomethyl-1'-pyrazolyl)phenylpyridine] tetrakis(acetate)-Tb3+ (BPTA-Tb3+), Triton X-100, octanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-[2-(2- aminoethylamino)-ethylamino]propyl-trimethoxysilane (AEPS) with ammonia water. The characterizations by transmission electron microscopy and fluorometric quantum methods show that the nanoparticles are spherical and uniform in size, 45 +/- 3 nm in diameter, strongly fluorescent with fluorescence yield of 10% and a long fluorescence lifetime of 2.0 ms. The amino groups directly introduced to the nanoparticle's surface by using AEPS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The nanoparticle-labeled anti-human alpha-fetoprotein antibody was prepared and used for time-resolved fluoroimmunoassay of (x-fetoprotein (AFP) in human serum samples. The assay response is linear from 0.10 ng ml(-1) to about 100 ng ml(-1) with the detection limit of 0.10 ng ml(-1). The coefficient variations (CVs) of the method are less than 9.0%. and the recoveries are in the range of 84-98% for human serum sample measurements. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel water resistant sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBIs) were synthesized from 6,6'-disulfonic-4,4'-binaphthy]-1,1',8,8'-tetracarboxylic dianhydride (SBTDA) and various aromatic ether tetraamines. The resulting polymers with IEC in the range of 2.17-2.87 mequiv g(-1) have a combination of desired properties such as high solubility in common organic solvents, film-forming ability, and excellent thermal and mechanical properties. Flexible and tough membranes, obtained by casting from m-cresol solution, had tensile strength, elongation at break, and tensile modulus values in the range of 87.6-98.4 MPa, 35.8-52.8%, and 0.94-1.07 GPa. SPBIBI membranes with a high degree of sulfonation displayed high proton conductivity and a good resistance to water swelling as well. SPBIBI-b with IEC of 2.80 mequiv g(-1) displayed the conductivity of 1.74 x 10(-1) S cm(-1) at 100 degrees C, which was comparable to that of Nafion (R) 117 (1.78 x 10(-1) S cm(-1), at 100 degrees C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal crystallization behavior of poly(L-lactic acid)/organo-montmorillonite nanocomposites (PLLA/OMMT) with different content of OMMT, using a kind of twice-functionalized organoclay (TFC), prepared by melt intercalation process has been investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods (t(i)) and half times for overall PLLA crystallization (100 degrees C <= T-c <= 120 degrees C) were affected by the temperature and the content of TFC in nanocomposites. The kinetic of isothermal crystallization of PLLA/TFC nanocomposites was studied by Avrami theory. Also, polarized optical photomicrographs supplied a direct way to know the role of TFC in PLLA isothermal crystallization process. Wide angle X-ray diffraction (WAXD) patterns showed the nanostructure of PLLA/TFC material, and the PLLA crystalline integrality was changed as the presence of TFC. Adding TFC led to the decrease of equilibrium melting point of nanocomposites, indicating that the layered structure of clay restricted the full formation of crystalline structure of polymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic, magnetic and electronic properties of MFe3N (M = Fe, Ru, Os) are investigated via first-principles calculations. The calculated results are in agreement with the experimental and other theoretical data. The high ratios of bulk modulus to shear modulus 2.7, 2.0, and 1.8 for gamma'-Fe4N, RuFe3N, and OsFe3N, respectively, indicate that they have good ductility. gamma'-Fe4N possesses the largest B/C-44 (3.41) ratio, which suggests that it is much prone to shearing. The net magnetic moment per formula unit decreases from 9.90 for gamma'-Fe4N, 7.66 for RuFe3N, to 6.80 mu(B) for OsFe3N.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed a reproducible, noncovalent strategy to functionalize multiwalled carbon nanotubes (MWNTs) via embedding nanotubes in polysiloxane shells. (3-Aminopropyl)triethoxysilane molecules adsorbed to the nanotube surfaces via hydrophobic interactions are polymerized simply by acid catalysis and form a thin polysiloxane layer. On the basis of the embedded MWNTs, negatively charged gold nanoparticles are anchored to the nanotube surfaces via electrostatic interactions between the protonated amino groups and the gold nanoparticles. Furthermore, these gold nanoparticles can further grow and magnify along the nanotubes through heating in HAuCl4 aqueous solution at 100 degrees C; as a result these nanoparticles are joined to form continuous gold nanowires with MWNTS acting as templates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully sulfonated polyaniline nano-particles, nano-fibrils and nano-networks have been achieved for the first time by electrochemical homopolymerization of orthanilic acid using a three-step electrochemical deposition procedure in a mixed solvent of acetonitrile (ACN) and water. The diameter of the uniform nano-particles is about 60nm, and the nano-fibrils can be organized in two-dimensional (21)) or three-dimensional (313) non-periodic networks with good electrical contact. Average distance between contacts is about 850 and 600 nm for a 2D and 3D system, respectively. The details of the poly(orthanilic acid) (POA) nano-structure were examined with a field emission scanning electron microscope (SEM). The structure and properties of POA were characterized with FTIR, UV-vis and electrochemical methods. The 3D POA nano-networks coated platinum electrode gave a direct electrochemical behavior of horse heart cytochrome c (Cyt c) immobilized on this electrode surface, a pair of well-defined redox waves with formal potential (E-ol) of -0.032 V (versus Ag/AgCl) was achieved. The interaction between Cyt c and POA makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods were used to investigate the interaction of Cyt c with POA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new polymeric lanthanide(III) complexes of nicotinic acid N-oxide and isonicotinic acid N-oxide have been synthesized and structurally determined. In the isomorphous compounds [(Ln(L-1)(3) (H2O)(2))(n)]. 4nH(2)O(HL1 = nicotinic acid N-oxide; Ln = Eu, 1; Ln = Er, 2) the lanthanide(III) ions form infinite double chains along the b direction through the coordination of bridging carboxylate and N-oxide groups. The chains are cross-linked through hydrogen bonds between aqua ligands and uncoordinated N-oxide groups and between aqua ligands and lattice water molecules, to form a three-dimensional network. [(Eu(L-2)(2)-(H2O)(4))(n)](NO3)(n). nH(2)O (HL2 = isonicotinic acid N-oxide, 3) has a polymeric structure in which the europium (III) ions are connected into infinite chains by pairs of syn-syn carboxylate groups. Adjacent chains are interlinked by hydrogen bonds between aqua ligands and N-oxide groups to form a layer parallel to the (100) plane, and such layers are connected by hydrogen bonds between nitrate anions and aqua ligands, and between oxide groups and lattice water molecules, into a three-dimensional network. In [(Er-2(L-2)(4)(H2O)(10))](NO3)(2). H2O, 4, dinuclear units are inter-linked into a three-dimensional network through hydrogen bonding between aqua ligands and N-oxide groups of both bidentate bridging and unidentate L-2 ligands. Factors affecting the formation of coordination chains and dinuclear units are discussed. Luminescence properties of 1 and 3 have also been studied. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two types of macromolecular free radicals similar to CH2CONH(C) over dotHCH(2) similar to (a) and similar to CH2(C) over dot = O (b) trapped in irradiated polyamide-1010 (PA1010) and PA1010 filled with neodymium oxide (Nd2O3) were characterized by an ESR approach. It is found that (a) is prevailingly trapped in the fold surface of the lamellae and (b) in the amorphous phase. This result suggests that trapped radicals mainly exist in the non-crystalline phases. The effect of the fold surface area of the lamellae on the behavior of the trapped radicals is discussed in this paper. Whether for the specimens with similar crystallinities, but different crystallite sizes, or for those with the same concentration of neodymium oxide, but different crystallinities, radical (a) exists dominantly in the specimen with a larger fold surface area of the lamellae. Under certain circumstances, radical (a) can transform into radical (b), obviously for a specimen with a larger fold surface area of the lamellae. It means that the fold surface area of the lamellae plays an important role in the transformation of radical (a) to (b). (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-type lectins are Ca2+ dependent carbohydrate-recognition proteins that play crucial roles in the invertebrate innate immunity, such as nonself recognition, activation of proPO system, antibacterial activity, promotion of phagocytosis and nodule formation. In this study, a novel C-type lectin of bay scallops Argopecten irradians (Ai Lec) was identified using expressed sequence tag (EST) and RACE techniques. The Ai Lec cDNA encoded a polypeptide of 171 amino acids with a putative signal peptide of 21 amino acid residues and a mature protein of 150 amino acids. The deduced amino acid sequence of Ai Lec was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 131 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. The expression of Ai Lec transcript was dominantly detected in the hepatopancreas and slightly detected in the haemocytes of normal scallops. 6 h after Vibrio anguillarum-challenge and 8 h after Micrococcus luteus-challenge, the temporal expression of Ai Lec mRNA in hemocytes was increased by 4.4- and 3.6-folds, respectively. The results suggested that Ai Lec was a constitutive and inducible acute-phase protein and might be involved in immune response to Gram-negative and Gram-positive microbial infection in bay scallop A. irradians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extremely thermophilic anaerobic archaeon strain, HJ21, was isolated from a deep-sea hydrothermal vent, could produce hyperthermophilic alpha-amylase, and later was identified as Thermococcus from morphological, biochemical, and physiological characteristics and the 16S ribosomal RNA gene sequence. The extracellular thermostable alpha-amylase produced by strain HJ21 exhibited maximal activity at pH 5.0. The enzyme was stable in a broad pH range from pH 5.0 to 9.0. The optimal temperature of alpha-amylase was observed at 95 degrees C. The half-life of the enzyme was 5 h at 90 degrees C. Over 40% and 30% of the enzyme activity remained after incubation at 100 degrees C for 2 and 3 h, respectively. The enzyme did not require Ca2+ for thermostability. This alpha-amylase gene was cloned, and its nucleotide sequence displayed an open reading frame of 1,374 bp, which encodes a protein of 457 amino acids. Analysis of the deduced amino acid sequence revealed that four homologous regions common in amylases were conserved in the HJ21 alpha-amylase. The molecular weight of the mature enzyme was calculated to be 51.4 kDa, which correlated well with the size of the purified enzyme as shown by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis.