74 resultados para Latex proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative electrochemilumineseence (ECL) detection of a model protein, bovine serum albumin (BSA) was achieved via biotin-avidin interaction using an avidin-based sensor and a well-developed ECL system of tris(2,2'-bipyridine) ruthenium(II) derivative as label and tri-n-propylamine (TPA) as coreactant. To detect the protein, avidin was linked to the glassy carbon electrode through passive adsorptions and covalent interaction with carboxylate-terminated carbon nanotubes that was used as binder to immobilize avidin onto the electrode. Then, biotinylated BSA tagged with tris(2,2'-bipyridine) ruthenium(II) label was attached to the prepared avidin surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, one water-soluble functionalized ionic liquid (IL), 1-butyl-3-methylimidazolium dodecanesulfonate (BAS), was designed, investigated and successfully applied to microchip micellar electrokinetic chromatography (MEKC) construction. It possessed the properties of both IL and surfactant. A fairly stable pH value similar to 7.4, which was fit to pH values of general biological buffers, was nicely placed at the optimum concentration of 20 mM BAS solution. While applying BAS solution as running buffer in poly(dimethylsiloxane) (PDMS) microfluidic systems, significantly enhanced electroosmotic flow (8-fold) and resolutions between analytes were obtained than that using other supporting electrolytes or surfactants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation mechanism of a styrene/n-butyl acrylate copolymer latex film subjected to uniaxial tensile stress was studied by small-angle X-ray scattering. The influence of annealing at 23, 60, 80, and 100 degrees C for 4 h on microscopic deformation processes was elucidated. It was demonstrated that the microscopic deformation mechanism of the latex films transformed gradually from nonaffine deformation behavior to affine deformation behavior with increasing annealing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile and efficient method to immobilize bioactive proteins onto polymeric substrate was established. Testis-specific protease 50 (TSP50) was immobilized on ultrafine biodegradable polymer fibers, i.e., (1) to prepare a propargyl-containing polymer P(LA90-co-MPCIO) by introducing propargyl group into a cyclic carbonate monomer (5-methyl-5-propargyloxycarbonyl-1,3-dioxan2-one, MPC) and copolymerizing it with L-lactide; (2) to electrospin the functionalized polymer into ultrafine fibers; (3) to azidize the TSP50, and (4) to perform the click reaction between the propargyl groups on the fibers and the azido groups on the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation mechanism or styrene/n-butyl acrylate copolymer latex films with fiber symmetric crystalline structure subjected to uniaxial stretching was studied using synchrotron small-angle X-ray scattering technique. The fibers were drawn at angles or 0, 35, and 55 degrees with respect to the Fiber axis. In all cases, the microscopic deformation within the crystallites was Found to deviate from affine deformation behavior with respect to the macroscopic deformation ratio. Moreover, the extent of this deviation is different in the three cases. This peculiar behavior can be attributed to the relative orientation of the (111) plane of the crystals, the plane of densest packing, with respect to the stretching direction in each case. When the stretching direction coincides with the crystallographic (111) plane, which is the case for stretching directions of 0 and 55 degrees with respect to the fiber axis, the microscopic deformation deviates less from affine behavior than when the stretching direction is arbitrarily oriented with respect to the crystallographic (111) plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural evolution of a single-layer latex film during annealing was studied via grazing incidence ultrasmall-angle X-ray scattering (GIUSAXS) and atomic force microscopy (AFM). The latex particles were composed of a low-T-g (-54 degrees C) core (n-butylacrylate, 30 wt %) and a high-T-g (41 degrees C) shell (t-butylacrylate, 70 wt %) and had an overall diameter of about 500 nm. GIUSAXS data indicate that the q(y) scan at q(z) = 0.27 nm(-1) (out-of-plane scan) contains information about both the structure factor and the form factor. The GIUSAXS data on latex films annealed at various temperatures ranging from room temperature to 140 degrees C indicate that the structure of the latex thin film beneath the surface changed significantly. The evolution of the out-of-plane scan plot reveals the surface reconstruction of the film. Furthermore, we also followed the time-dependent behavior of structural evolution when the latex film was annealed at a relatively low temperature (60 degrees C) where restructuring within the film can be followed that cannot be detected by AFM, which detects only surface morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and high-throughput method for the identification of disulfide-containing peptides utilizing peptide-matrix adducts is described. Some commonly used matrices in MALDI mass spectrometry were found to specifically react with sulfhydryl groups within peptide, thus allowing the observation of the peptide-matrix adduct ion [M + n + n' matrix + H](+) or [M + n + n' matrix + Na](+) (n = the number of cysteine residues, n' = 1, 2, ..., n) in MALDI mass spectra after chemical reduction of disulfide-linked peptides. Among several matrices tested, alpha-cyano-4-hydroxycinnamic acid (CHCA, molecular mass 189 Da) and alpha-cyano-3-hydroxycinnamic acid (3-HCCA) were found to be more effective for MALDI analysis of disulfide-containing peptides/proteins. Two reduced cysteines involved in a disulfide bridge resulted in a mass shift of 189 Da per cysteine, so the number of disulfide bonds could then be determined, while for the other matrices (sinapinic acid, ferulic acid, and caffeic acid), a similar addition reaction could not occur unless the reaction was carried out under alkaline conditions. The underlying mechanism of the reaction of the matrix addition at sulfhydryl groups is proposed, and several factors that might affect the formation of the peptide-matrix adducts were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, we report an approach for protein detection enhanced by ionic liquid (IL) selectors in capillary electrophoresis (CE), with avidin as a model protein. Hydrophilic ILs were added into the running buffer of CE and acted as selectors for sample injection, enriching the positive target and excluding the negative from the capillary. When using 3% (v/v) IL selector, the detection sensitivity of avidin was improved by over one order of magnitude, while the interference from protein adsorption was effectively avoided, even in an uncoated capillary. The electrochemiluminescence method was initially used for IL-based CE with low noise that was independent of the IL concentration, making ILs almost transparent as additives in the electrophoresis buffer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polymer dispersion consisting of soft latex spheres with a diameter of 135 nm was used to produce a crystalline film with face-centered cubic (fcc) packing of the spheres. Different from conventional small-molecule and hardsphere colloidal crystals, the crystalline latex film in the present case is soft (i.e., easily deformable). The structural evolution of this soft colloidal latex film under stretching was investigated by in-situ synchrotron ultra-small-angle X-ray scattering. The film exhibits polycrystalline scattering behavior corresponding to fcc structure. Stretching results not only in a large deformation of the crystallographic structure but also in considerable nonaffine deformation at high draw ratios. The unexpected nonaffine deformation was attributed to slippage between rows of particles and crystalline grain boundaries. The crystalline structure remains intact even at high deformation, suggesting that directional anisotropic colloidal crystallites can be easily produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elucidation of key influence factors for electrostatic adsorption is very important to control protein nonspecific adsorption on modified surfaces. In this study, real-time surface plasmon resonance technique is used to characterize the electrostatic adsorption of two proteins (mouse IgG and protein A) on carboxymethyldextran-modified surface. The results show that protein solution pH and ionic strength are key influence factors for efficient electrostatic adsorption. The influence of protein, solution pH on the amount of electrostatic adsorption depends on the type of the charge and the charge density of both protein and modified matrix on the surface. The electrostatic adsorption process involves a competition between the positively charged protein and other positively charged species in the buffer solution. A decrease of ionic strength leads to an increasing electrostatic adsorption. The kinetic adsorption constants of protein A at different pH values were also calculated and compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of potassium thiocyanate on the partitioning of lysozyme and BSA in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system has been investigated. As a result of the addition of potassium thiocyanate to the PEG/ammonium sulfate system, the PEG/mixed salts aqueous two-phase system was formed. It was found that the potassium thiocyanate could alter the pH difference between the two phases, and, thus, influence the partition coefficients of the differently charged proteins. The relationship between partition coefficient of the proteins and pH difference between two phases has been discussed. It was proposed that the pH difference between two phases could be employed as the measurement of electrostatic driving force for the partitioning of charged proteins in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system.