54 resultados para Large-scale Structure
Resumo:
In this paper, we try to detect the SZ effect in the 2MASS DWT clusters and less bound objects in order to constrain the warm-hot intergalactic medium distribution on large scales by cross-correlation analysis. The results of both observed WMAP and mock SZ effect map indicate that the hot gas distributes from inside as well as outside of the high density regions of galaxy clusters, which is consistent with the results of both observation and hydro simulation. Therefore, the DWT measurement of the cross-correlation would be a powerful tool to probe the missing of baryons in the universe.
Resumo:
We study the non-Gaussianity induced by the Sunyaev-Zel'dovich (SZ) effect in cosmic microwave background (CMB) fluctuation maps. If a CMB map is contaminated by the SZ effect of galaxies or galaxy clusters, the CMB maps should have similar non-Gaussian features to the galaxy and cluster fields. Using the WMAP data and 2MASS galaxy catalogue, we show that the non-Gaussianity of the 2MASS galaxies is imprinted on WMAP maps. The signature of non-Gaussianity can be seen with the fourth-order cross-correlation between the wavelet variables of the WMAP maps and 2MASS clusters. The intensity of the fourth-order non-Gaussian features is found to be consistent with the contamination of the SZ effect of 2MASS galaxies. We also show that this non-Gaussianity can not be seen by the high-order autocorrelation of the WMAP. This is because the SZ signals in the autocorrelations of the WMAP data generally are weaker than the WMAP-2MASS cross-correlations by a factor f(2), which is the ratio between the powers of the SZ-effect map and the CMB fluctuations on the scale considered. Therefore, the ratio of high-order autocorrelations of CMB maps to cross-correlations of the CMB maps and galaxy field would be effective to constrain the powers of the SZ effect on various scales.
Resumo:
Large earthquakes, such as the Chile earthquake in 1960 and the Sumatra-Andaman earthquake on Dec 26, 2004 in Indonesia, have generated the Earth’s free oscillations. The eigenfrequencies of the Earth’s free oscillations are closely related to the Earth’s internal structures. The conventional methods, which mainly focus on calculating the eigenfrequecies by analytical ways, and the analysis on observations can not easily study the whole processes from earthquake occurrence to the Earth’s free oscillation inspired. Therefore, we try to use numerical method incorporated with large-scale parallel computing to study on the Earth’s free oscillations excited by giant earthquakes. We first give a review of researches and developments of the Earth’s free oscillation, and basical theories under spherical coordinate system. We then give a review of the numerical simulation of seismic wave propagation and basical theories of spectral element method to simulate global seismic wave propagation. As a first step to study the Earth’s free oscillations, we use a finite element method to simulate the propagation of elastic waves and the generation of oscillations of the chime bell of Marquis Yi of Zeng, by striking different parts of the bell, which possesses the oval crosssection. The bronze chime bells of Marquis Yi of Zeng are precious cultural relics of China. The bells have a two-tone acoustic characteristic, i.e., striking different parts of the bell generates different tones. By analysis of the vibration in the bell and the spectrum analysis, we further help the understanding of the mechanism of two-tone acoustic characteristics of the chime bell of Marquis Yi of Zeng. The preliminary calculations have clearly shown that two different modes of oscillation can be generated by striking different parts of the bell, and indicate that finite element numerical simulation of the processes of wave propagation and two-tone generation of the chime bell of Marquis Yi of Zeng is feasible. These analyses provide a new quantitative and visual way to explain the mystery of the two-tone acoustic characteristics. The method suggested by this study can be applied to simulate free oscillations excited by great earthquakes with complex Earth structure. Taking into account of such large-scale structure of the Earth, small-scale low-precision numerical simulation can not simply meet the requirement. The increasing capacity in high-performance parallel computing and progress on fully numerical solutions for seismic wave fields in realistic three-dimensional spherical models, Spectral element method and high-performance parallel computing were incorporated to simulate the seismic wave propagation processes in the Earth’s interior, without the effects of the Earth’s gravitational potential. The numerical simulation shows that, the results of the toroidal modes of our calculation agree well with the theoretical values, although the accuracy of our results is much limited, the calculated peaks are little distorted due to three-dimensional effects. There exist much great differences between our calculated values of spheroidal modes and theoretical values, because we don’t consider the effect the Earth’ gravitation in numerical model, which leads our values are smaller than the theoretical values. When , is much smaller, the effect of the Earth’s gravitation make the periods of spheroidal modes become shorter. However, we now can not consider effects of the Earth’s gravitational potential into the numerical model to simulate the spheroidal oscillations, but those results still demonstrate that, the numerical simulation of the Earth’s free oscillation is very feasible. We make the numerical simulation on processes of the Earth’s free oscillations under spherically symmetric Earth model using different special source mechanisms. The results quantitatively show that Earth’s free oscillations excited by different earthquakes are different, and oscillations at different locations are different for free oscillation excited by the same earthquake. We also explore how the Earth’s medium attenuation will take effects on the Earth’s free oscillations, and take comparisons with the observations. The medium attenuation can make influences on the Earth’s free oscillations, though the effects on lower-frequency fundamental oscillations are weak. At last, taking 2008 Wenchuan earthquake for example, we employ spectral element method incorporated with large-scale parallel computing technology to investigate the characteristics of seismic wave propagation excited by Wenchuan earthquake. We calculate synthetic seismograms with one-point source model and three-point source model respectively. Full 3-D visualization of the numerical results displays the profile of the seismic wave propagation with respect to time. The three-point source, which was proposed by the latest investigations through field observation and reverse estimation, can better demonstrate the spatial and temporal characteristics of the source rupture processes than one-point source. Primary results show that those synthetic signals calculated from three-point source agree well with the observations. This can further reveal that the source rupturing process of Wenchuan earthquake is a multi-rupture process, which is composed by at least three or more stages of rupture processes. In conclusion, the numerical simulation can not only solve some problems concluding the Earth’s ellipticity and anisotropy, which can be easily solved by conventional methods, but also finally solve the problems concluding topography model and lateral heterogeneity. We will try to find a way to fully implement self-gravitation in spectral element method in future, and do our best to continue researching the Earth’s free oscillations using the numerical simulations to see how the Earth’ lateral heterogeneous will affect the Earth’s free oscillations. These will make it possible to bring modal spectral data increasingly to bear on furthering our understanding of the Earth’s three-dimensional structure.
Resumo:
The transition from hard to soft magnetic behaviour with increasing quenching rate is shown for Nd60WAl10Fe20Co10 melt-spun ribbons with different thickness. Microstructure and magnetic domain structure of ribbons were studied by magnetic force microscopy (MFM). Particle sizes < 5 nm decreasing gradually with increasing quenching rate were deduced from topographic images which differ from large-scale magnetic domains with a periodicity of about 350 nm in all ribbons irrespective the coercivity. This indicates that the magnetic properties of the alloy are governed by interaction of small magnetic particles. It is concluded that the presence of short-range-ordered structures with a local ordering similar to the Al metastable Nd-Fe binary phase is responsible for the hard magnetic properties in samples subjected to relatively low quenching rate.
Resumo:
Magnetic domain structure of Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic-force microscopy. In the magnetic-force images it is shown that the exchange-interaction-type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. The existence of the large-scale domains demonstrates that the magnetic moments of a great deal of short-scale ordered atomic clusters in the BMG have been aligned by exchange coupling. Annealing at 715 K leads to partial crystallization of the BMG. However, the exchange coupling is stronger in the annealed sample, which is considered to arise from the increase of transition-metal concentration in the amorphous phase due to the precipitation of Nd crystalline phase.
Resumo:
Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.
Resumo:
Novel three-dimensional (3D) flowerlike MnWO4 micro/nanocomposite structure has been successfully synthesized for the first time. The synthesized products were systematically studied by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) and photoluminescence (PL) spectra. It is found that both reaction time and temperature have significant effects on the morphology of the products.
Resumo:
Superhigh aspect-ratio Cu-thiourea (Cu(tu)) nanowires have been synthesized in large quantity via a fast and facile method. Nanowires of Cu (tu)Cl center dot 0.5H(2)O and Cu(tu)Br center dot 0.5H(2)O were found to be 60-100 nm and 100-200 nm, in diameter, and could extend to several millimeters in length. It is found to be the most convenient and facile approach to the fabrication of one-dimensional superhigh aspect-ratio nanomaterials in large scale so far.
Resumo:
In this work we demonstrate that hexagonal nanodisks of cadmium hydroxide with nanoporous structures could be fabricated by a facile hydrothermal treatment without using any templates or organic additives. With this method, the length of the hexagonal edge and thickness of the nanodisks can be adjusted through controlling the experimental conditions such as the pH value of the mother liquor and the initial concentration of the cadmium ion. On the basis of our experimental observations and understandings of the nanocrystal growth, the formation of the nanodisks is believed to mainly originate from the oriented attachment of small particles. Furthermore, the hexagonal Cd(OH)(2) nanodisks can be converted to CdO semiconductors with similar morphology by calcinations.