48 resultados para Lake Erie, Battle of, 1813.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing attentions have been paid to the subsurface geological storage for CO2 in view of the huge storage capacity of subsurface reservoirs. The basic requirement for subsurface CO2 storage is that the CO2 should be sequestrated as supercritical fluids (physical trapping), which may also interact with ambient reservoir rocks and formation waters, forming new minerals (chemical trapping). In order to the effective, durable and safe storage for CO2, enough storage space and stable sealing caprock with strong sealing capacity are necessitated, in an appropriate geological framework. Up till now, hydrocarbon reservoirs are to the most valid and appropriate CO2 storage container, which is well proven as the favorable compartment with huge storage capacity and sealing condition. The thesis focuses on two principal issues related to the storage and sealing capacity of storage compartment for the Qingshankou and Yaojia formations in the Daqingzijing block, Southern Songliao Basin, which was selected as the pilot well site for CO2-EOR storage. In the operation area, three facies, including deltaic plain, deltaic front and subdeep-deep lake facies associations, are recognized, in which 11 subfacies such as subaqueous distributary channel, river- mouth bar, interdistributary bay, sheet sandbody, crevasse splay and overflooding plain are further identified. These subfacies are the basic genetic units in the reservoir and sealing rocks. These facies further comprise the retrogradational and progradational depositional cycles, which were formed base- level rise and fall, respectively. During the regressive or lake lowstand stage, various sands including some turbidites and fans occurred mostly at the bottom of the hinged slope. During the progradation stage, these sands became smaller in size and episodically stepped backwards upon the slope, with greatly expanded and deeped lake. However, most of Cretaceous strata in the study area, localized in the basin centre under this stage, are mainly composed of grey or grizzly siltstones and grey or dark grey mudstones intercalated with minor fine sandstones and purple mudstones. On the base of borehole and core data, these siltstones are widespread, thin from 10 to 50 m thick, good grain sorting, and have relative mature sedimentary structures with graded bedding and cross- lamination or crossbeds such as ripples, which reflect strong hydrodynamic causes. Due to late diagenesis, pores are not widespread in the reservoirs, especially the first member of Qingshankou formation. There are two types of pores: primary pore and secondary cores. The primary pores include intergranular pores and micropores, and the secondary pores include emposieus and fracture pores. Throat channels related to pores is also small and the radius of throat in the first, second and third member of Qingshankou formation is only 0.757 μm, 0.802 μm and 0.631 μm respectively. In addition, based on analyzing the probability plot according to frequency of occurrence of porosity and permeability, they appear single- peaked distribution, which reflects strong hetero- geneity. All these facts indicate that the conditions of physical property of reservoirs are not better. One reason may be provided to interpret this question is that physical property of reservoirs in the study area is strong controlled by the depositional microfacies. From the statistics, the average porosity and permeability of microfacies such as subaqueous distributary channel, channel mouth bar, turbidites, is more than 9 percent and 1md respectively. On the contrary, the average porosity and permeability of microfacies including sand sheet, flagstone and crevasse splay are less than 9 percent and 0.2md respectively. Basically, different hydrodynamic environment under different microfacies can decide different physical property. According to the reservoir models of the first member of Qingshankou formation in the No. well Hei47 block, the character of sedimentary according to the facies models is accord to regional disposition evolution. Meantime, the parameter models of physical property of reservoir indicate that low porosity and low permeability reservoirs widespread widely in the study area, but the sand reservoirs located in the channels are better than other places and they are the main sand reservoirs. The distribution and sealing ability of fault- fractures and caprock are the key aspects to evaluate the stable conditions of compartments to store CO2 in the study area. Based on the core observation, the fractures widespread in the study area, especially around the wells, and most of them are located in the first and second member of Qingshankou formation, almost very few in the third member of Qingshankou formation and Yaojia formation instead. In addition, analyzing the sealing ability of eleven faults in the three-dimensional area in the study area demonstrates that most of faults have strong sealing ability, especially in the No. well Hei56 and Qing90-27. To some extent, the sealing ability of faults in the No. well Hei49, Qing4-6 and Qing84-29 are worse than others. Besides, the deposition environment of most of formations in the study area belongs to moderately deep and deep lake facies, which undoubtedly take advantage to caprocks composed of mudstones widespread and large scale under this deposition environment. In the study area, these mudstones distribute widely in the third member of Qingshankou formation, Yaojia and Nenjiang formation. The effective thickness of mudstone is nearly ~550m on an average with few or simple faults and fractures. In addition, there are many reservoir beds with widely- developed insulated interbeds consist of mudstones or silty mudstone, which can be the valid barrier to CO2 upper movement or leakage through diffusion, dispersion and convection. Above all, the closed thick mud caprock with underdeveloped fractures and reservoir beds can be taken regard as the favorable caprocks to provide stable conditions to avoid CO2 leakage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Daihai Lake, a graben-type closed lake, lies ca. 10 km east of Liangcheng County, Inner Mongolia, north-central China. For its location at the transition of semi-humid and semi-arid areas, and in the north edge of the East Asian monsoon, the lake is sensitive to changes in climate and environment. Based on analyses of total inorganic carbon (TIC), total organic carbon (TOC) and the ratio of total organic carbon to total nitrogen (C/N ratio) of DH99a core sediments recovered in the central part of Daihai Lake, the data suggest Holocene climatic history of the lake region is reconstructed. In this paper, the TIC and TOC contents of the lake sediments are closely related to climate changes. 1) Changes in TIC content of the lake sediments is closely related to climate, which directly reflect changes of temperature in the lake region, i.e., higher TIC content is linked with warmer temperature and stronger evaporation; 2) Changes in TOC and C/N ratio reflect the regional precipitation, i.e., relatively higher TOC content and C/N ratio indicate higher rainfall which results in stronger river flow and more organic matter entering into the lake. Data of the TIC content, TOC content and C/N ratio of DH99a core sediments suggest that climatic history of the Daihai Lake region is characterized by 4 stages. During the interval of ca. 11200-7500 a BP, higher TIC content, relatively lower TOC content and C/N ratio value indicate a warmer and slight dry condition over the lake area. From ca. 7500 to 4500 a BP, high values of TIC content, with an increase in TOC content and C/N ratio suggest the climate was warm and humid. Changes of TIC content, TOC content show that both temperature and precipitation displayed obvious fluctuations during the period, i.e., slightly cool and humid ca. 7500-6700 a BP, warm and moist ca. 6700-5300a BP, mild and comparatively humid ca. 5300-4500a BP. Between ca. 4500 and 2900 a BP, TIC content and TOC content decreased gradually while fluctuating, C/N ratio displayed a decreasing trend. These data imply that the climate generally became cooler and drier than the preceding period. The lowest values of TIC content, TOC content and C/N ratio during the interval of ca. 2900-0 a BP, demonstrate that the climate was severe, and became cool and dry. However the relative higher values of TIC content, TOC content and C/N ratio between ca. 1700 and 1300 a BP may denote an increase both in temperature and in precipitation. Data of TIC content, TOC content and C/N ratio in Daihai DH99a core sediments indicate that the warm period was asynchronous with the humid time, the warm interval began in ca. 11200 a BP, and ended in ca. 2900 a BP. The humid period was ca. 7500-2900 a BP. During ca. 7500^500 a BP, the climate was warm and humid, which was the climatic optimum of the Holocene Epoch in the Daihai Lake region. Data of TIC content, TOC content and C/N ratio in Daihai DH99a core sediments imply that the Holocene climate was unstable, the fluctuating events happened occasionally. Such as the cold and dry climate in ca. 4400-4200a BP, the warm and humid climatic condition in the period between ca.1700 and 1300a BP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bedding sequences, based on the results from others, have been constructed by geological researches. Furthermore, the reservoir, gas-bearing characteristics and reservoir-blanket association have been increasingly understudied by the geological and seismic studies as well as the log data. The deep dynamics for the formation and development of Shangdu basin resulted from complicated fault system and its continued action have been obtained. The studies on the reservoir condition reveal that the mantle-derived magmatism provided the materials for the CO_2 gas reservoir after Paleogene Period and the huge regional fault not only control the evolution of basin and sedimentary but also pay a role as a passage of the CO_2. The sandstone of river course formed in Paleogene System, with very good reservoir condition, are widely developed in the study area. The blanket with good condition is composed by the basalt in Hannuoba Formation and lake facies shale of Shangdou Formation. Local structures and good encirclement are resulted from the different sedimentary environment and later differential sagging. All statements above demonstrate that there is a very good pool-forming condition for the CO_2. In addition, the high abundance of H_2 recognized during drill exploration are also of significance.More than 30 inorganic CO_2 gas reservoirs have been determined during the exploration for the oil-bearing basins in the eastern China, which are developed along the two sides of Tanlu Fault or within it. In which the CO_2 gas reservoir in Shangdou basin is an inorganic gas reservoir far away from Tanlu Fault. Thus the determination of the CO_2 gas reservoir in Shangdou basin is significant for sciences due to the first exploration for the inorganic CO_2 gas reservoir in our country. The geophysical exploration carried on the CO_2 gas reservoir is benefited for the research of prospecting techniques of CO_2 reservoir.