81 resultados para In-vehicle system
Resumo:
We present a novel reference compensation method for eliminating environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating (FBG) sensors. By employing a shielded wavelength-division-multiplexed reference FBG in the system the environmental noise is mea, sured from the reference channel, and then subtracted from the demodulation result of each sensor channel. An approximate 40 dB reduction of the environmental noise has been experimentally achieved over a frequency range from 20 Hz to 2 kHz. This method is also suitable for the elimination of broadband environmental noise. The corresponding FBG sensor array system proposed in this paper has shown a wave-length resolution of 7 x 10(-4) pm/root Hz. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We theoretically study the spatial behaviors of the spin precession in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field in the system, we obtain the general conditions to generate a persistent spin helix and predict a persistent spin helix pattern in [001]-grown quantum wells. Particularly, we demonstrate that the phase of spin can be locked to propagate in a quantum well with SU(2) symmetry.
Resumo:
The spin-polarized transport property of a diluted magnetic semiconductor two-dimensional electron gas is investigated theoretically at low temperature. A large current polarization can be found in this system even at small magnetic fields and oscillates with increasing magnetic field while the carrier polarization is vanishingly small. The magnitude as well as the sign of the current polarization can be tuned by varying magnetic field, the electron density and the Mn concentration. (c) 2005 American Institute of Physics.
Resumo:
The temperature dependence of the formation of nano-scale indium clusters in InAlGaN quaternary alloys, which are grown by metalorganic chemical vapour deposition on GaN/Si(111) epilayers, is investigated. Firm evidence is provided to support the existence of phase separation, or nano-scale In-rich clusters, by the combined results of high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction (HRXRD) and micro-Raman spectra. The results of HRXRD and Raman spectra indicate that the degree of phase separation is strong and the number of In clusters in the InAlGaN layers on silicon substrate is higher at lower growth temperatures than that at higher growth temperatures, which limits the In and Al incorporated into the InAlGaN quaternary alloys. The detailed mechanism of luminescence in this system is studied by low temperature photoluminescence (LT-PL). We conclude that the ultraviolet (UV) emission observed in the quaternary InAlGaN alloys arises from the matrix of a random alloy, and the second emission peak in the blue-green region results from the nano-scale indium clusters.
Resumo:
Proceeding from the consideration of the demands from the functional architecture of high speed, high capacity optical communication network, this paper points out that photonic integrated devices, including high speed response laser source, narrow band response photodetector high speed wavelength converter, dense wavelength multi/demultiplexer, low loss high speed response photo-switch and multi-beam coupler are the key components in the system. The, investigation progress in the laboratory will be introduced.
Resumo:
This paper discovers some shortcomings in the algorithm for the incorporation of Si into GaAs in the GaAs VPE process. These faults arise from neglecting a link, the compatibility relationship, in chemical thermodynamics. The meaning of said relationship is as follows: In an equilibrium complex system, each species can only contribute one and the same quantity (its equilibrium quantity) to the different equilibria of the various reactions involving it; yet even under this restriction, every equilibrium constant is satisfied, and all the reaction equilibria coexist compatibly in the system. Only by adding the relationship can the equilibrium theory for the complex system be complete. This paper also tells its position in chemical thermodynamics. Such a compatibility concept directly leads to an equivalence principle: In a complex system, a certain species can usually be simultaneously formed by many chemical reactions; when the system has reached equilibrium under fixed environmental conditions, the equilibrium quantity of said species calculated according to each chemical equation of these reactions will be equal and the various reaction approaches will be equivalent, provided that for all the reactants and all the other products of these reactions their equilibrium quantities in the system are respectively taken as corresponding knowns for the calculations, which is extremely useful for seeking a functional relation among the species' equilibrium quantities in a system (Si contamination is one of the examples). Under the guidance of those arguments, the various schools' algorithms for the Si contamination can be uniformized and simplified, and the contamination quantity relation between Si and O, two very important impurities, is found.
Resumo:
This paper proposes a novel and innovative scheme for 10Gb/s parallel Very Short Reach (VSR) optical communication system. The optimized scheme properly manages the SDH/SONET redundant bytes and adjusts the position of error detecting bytes and error correction bytes. Compared with the OIF-VSR4-01.0 proposal, the scheme has a coding process module. The SDH/SONET frames in transmission direction are disposed as follows: (1) The Framer-Serdes Interface (FSI) gets 16x622.08Mb/s STM-64 frame. (2) The STM-64 frame is byte-wise stripped across 12 channels, all channels are data channels. During this process, the parity bytes and CRC bytes are generated in the similar way as OIF-VSR4-01.0 and stored in the code process module. (3) The code process module will regularly convey the additional parity bytes and CRC bytes to all 12 data channels. (4) After the 8B/10B coding, the 12 channels is transmitted to the parallel VCSEL array. The receive process approximately in reverse order of transmission process. By applying this scheme to 10Gb/s VSR system, the frame size in VSR system is reduced from 15552x12 bytes to 14040x12 bytes, the system redundancy is reduced obviously.
Resumo:
The interfacial reactions between thin films of cobalt and silicon and (100)-oriented GaAs substrates in two configurations, Co/Si/GaAs and Si/Co/GaAs, were studied using a variety of techniques including Auger electron spectroscopy, x-ray diffraction, and transmission electron microscopy. The annealing conditions were 200, 300, 400, 600-degrees-C for 30 min, and rapid thermal annealing for 15 s. It was found that Si layer in the Co/Si/GaAs system acts as a barrier at the interface between Co and GaAs when annealed up to 600-degrees-C. The interfacial reaction between Co and Si is faster than that between Co and GaAs in the system of Si/Co/GaAs. The sequence of compound formation for the two metallizations studied (Co/Si/GaAs and Si/Co/GaAs) depends strongly on the sample configuration as well as the layer thickness of Si and Co (Co/Si atomic ratio). From our results, it is promising to utilize Co/Si/GaAs multilayer film structure to make a CoSi2/GaAs contact, and this CoSi2 may offer an alternative to the commonly used W silicides as improved gate metallurgies in self-aligned metal-semiconductor field effect transistor (MESFET) technologies.
Resumo:
Transmission Volume Phase Holographic Grating (VPHG) is adopted as spectral element in the real-time Optical Channel Performance Monitor (OCPM), which is in dire need in the Dense Wavelength -division-multiplexing(DATDM) system. And the tolerance of incident angle, which can be fully determined by two angles: 6 and (p, is finally inferred in this paper. Commonly, the default setting is that the incident plane is perpendicular to the fringes when the incident angle is mentioned. Now the situation out of the vertical is discussed. By combining the theoretic analysis of VPHG with its use in OCPM and changing 6 and (0 precisely in the computation and experiment, the two physical quantities which can fully specify the performance of VPHG the diffraction efficiency and the resolution, are analyzed. The results show that the diffraction efficiency varies greatly with the change of 6 or (p. But from the view of the whole C-band, only the peak diffraction efficiency drifts to another wavelength. As for the resolution, it deteriorates more rapidly than diffraction efficiency with the change of (p, while more slowly with the change of theta. Only if \phi\less than or equal to+/-1degrees and alpha(B) -0.5 less than or equal to theta less than or equal to alpha(B) + 0.5, the performance of the VPHG would be good enough to be used in OCPM system.
Resumo:
We theoretically study the electronic structure, spin splitting, effective mass, and spin orientation of InAs nanowires with cylindrical symmetry in the presence of an external electric field and uniaxial stress. Using an eight-band k center dot p theoretical model, we deduce a formula for the spin splitting in the system, indicating that the spin splitting under uniaxial stress is a nonlinear function of the momentum and the electric field. The spin splitting can be described by a linear Rashba model when the wavevector and the electric field are sufficiently small. Our numeric results show that the uniaxial stress can modulate the spin splitting. With the increase of wavevector, the uniaxial tensile stress first restrains and then amplifies the spin splitting of the lowest electron state compared to the no strain case. The reverse is true under a compression. Moreover, strong spin splitting can be induced by compression when the top of the valence band is close to the bottom of the conductance band, and the spin orientations of the electron stay almost unchanged before the overlap of the two bands.
Resumo:
By in situ monitoring structural changes with the reflection spectrometer during the colloidal crystallization, we present direct experimental evidence of liquid-bcc-fcc phase transition in crystallization of charged colloidal particles, as a manifestation of the Ostwald's step rule. In addition, the lifetime of the bcc metastable structure in this system decreases significantly with increasing particle volume fraction, offering a possible explanation for "exceptions" to the step rule.
Resumo:
We study dynamical properties of quantum entanglement in the Dicke model with and without the rotating-wave approximation. Specifically, we investigate the maximal entanglement and mean entanglement which reflect the underlying chaos in the system, and a good classical-quantum correspondence is found. We also show that the maximal linear entropy can be more sensitive to chaos than the mean linear entropy.
Resumo:
A chiral constituent quark model approach, embodying s- and u-channel exchanges, complemented with a Reggeized treatment for the t channel is presented. A model is obtained allowing data for pi(-)p ->eta n and gamma p ->eta p to be described satisfactorily. For the latter reaction, recently released data by the CLAS and CBELSA/TAPS Collaborations in the system total energy range 1.6 less than or similar to W less than or similar to 2.8 GeV are well reproduced by the inclusion of Reggeized trajectories instead of simple. and. poles. The contribution from "missing" resonances, with masses below 2 GeV, is found to be negligible in the considered processes.
Resumo:
For thermal energy storage application, polyurea microcapsules about 2.5 mum in diameter containing phase change material were prepared using interfacial polycondensation method. In the system droplets in microns are first formed by emulsifying an organic phase consisting of a core material ( n-hexadecane) and an oil-soluble reactive monomer, toluene-2, 4-diisocyanate (TDI), in an aqueous phase. By adding water-soluble reactive monomer, diamine, monomers TDI and diamine react with each other at the interface of micelles to become a shell. Ethylenediamine (EDA), 1, 6-hexane diamine (HDA) and their mixture were employed as water-soluble reactive monomers. The effects of diamine type on chemical structure and thermal properties of the microcapsules were investigated by FT-IR and thermal analysis respectively. The infrared spectra indicate that polyurea microcapsules have been successfully synthesized; all the TG thermographs show microcapsules containing n-hexadecane can sustain high temperature about 300 degreesC without broken and the DSC measurements display that all samples possess a moderate heat of phase transition; thermal cyclic tests show that the encapsulated paraffin kept its energy storage capacity even after 50 cycles of operation. The results obtained from experiments show that the encapsulated n-hexadecane possesses a good potential as a thermal energy storage material.
Resumo:
Due to its inert reaction in soil system and distinctive vertical distribution in soil profile, caesium-137 (Cs-137) has been used as a tracer to assess wind erosion. In this study, 62 soil samples were collected from 4 sampling sites in Taipusi County, Inner Mongolia; Caesium-137 activities for those soil samples were measured using a gamma-ray spectrometry in Sichuan University, Chengdu. Distribution pattern of Cs-137 in vertical soil profile was different for different land use and land cover types. Caesium-137 was distributed homogeneously in plow layer of cropland, and negatively exponential in low to medium cover grassland. Distribution pattern in high covered grassland was represented by a peak at 2-4 cm soil depth followed by a negative exponential curve. Based on those findings, simplified mass balance model was chosen to estimate the rate of wind erosion for cropland, while profile distribution model was used for grassland. Estimated wind erosion rates were 7990, 4270 and 1808 Mg(.)km(-2.)a(-1) for cropland, low cover grassland and medium cover grassland, respectively. Wind erosion intensity correlated negatively with plant cover.