104 resultados para IR and Raman spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypyrrole nanostructure arrays, including simultaneously large quantities of nanowires and small quantities of partially filled nanotubules have been electrochemically synthesized in home-made etched ion-track polycarbonate (PC) templates. Diameter of the prepared nanostructures varies from 45 to 320 nm with their lengths up to 30 microns. Morphological studies of these nanostructures were performed by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. While optical absorption properties were studied by ultraviolet-visible-near infrared spectrophotometry (UV-vis-NIR). It has been observed that the absorption maximum of polypyrrole shifts to the longer wavelength side as the diameter of these nanostructures (nanowires and nanotubules) increases. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic degradation of organic dye molecules has attracted extensive attention due to their high toxicity to water resources. In this paper, we propose a novel method for the fabrication of uniform silver-coated ZnO nanowire arrays. The degradation of typical dye molecule rhodamine 6G (R6G), as an example, is investigated in the presence of the as-prepared silver-coated ZnO nanowire arrays. The experimental results show that such composite nanostructures exhibit high catalytic activity, and the reaction follows pseudo-first-order kinetics. Furthermore, these nanowire arrays are desirable SERS substrates for monitoring the catalytic degradation of dye molecules. Compared with traditional UV-visible spectroscopy, SERS technology can reflect more truly the catalytic degradation process occurring on the surface of the catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-step method was developed to fabricate conductive graphene/SnO2 (GS) nanocomposites in acidic solution. Graphite oxides were reduced by SnCl2 to graphene sheets in the presence of HCl and urea. The reducing process was accompanied by generation of SnO2 nanoparticles. The structure and composition of GS nanocomposites were confirmed by means of transmission electron microscopy, x-ray photoelectron and Raman spectroscopy. Moreover, the ultracapacitor characteristics of GS nanocomposites were studied by cyclic voltammograms (CVs) and electrical impedance spectroscopy (EIS). The CVs of GS nanocomposites are nearly rectangular in shape and the specific capacitance degrades slightly as the voltage scan rate is increased. The EIS of GS nanocomposites presents a phase angle close to p/2 at low frequency, indicating a good capacitive behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes paste (CNTP) electrode was prepared with multi-walled carbon nanotubes and methyl silicone oil. Polyoxometalates (POMs) were assembled on the electrode surface with different methods, and investigated by cyclic voltammetry and Raman spectroscopy. Experiments showed that POMs/CNTP electrode prepared by direct method had better performance. K6P2Mo18O62 center dot 14H(2)O (P2Mo18) assembled CNTP electrode (P2Mo18/CNTP) electrode possessed good reversibility and could catalyze the reduction of bromate and iodate in 0.1 M H2SO4 Solution. Further, the multilayer films of P2Mo18 assembled CNTP electrodes were fabricated by layer-by-layer technique, which showed higher electrocatalytic activities. All these POMs assembled CNTP electrodes prepared exhibited good stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectrophotometric titration by sodium hydroxide of 5,10,15-triphenyl-20-(4-hydroxyphenyl)porphyrin ((OH)(1)PH2) is studied as a function of solvent composition of DMF-H2O binary solvent mixture ([OH-] = 0.04 M). Combining the structure changes of the porphyrin and the "four orbital" model of Gouterman, many features of the optical spectra of this deprotonated para-hydroxy-substituted tetraphenylporphyrin in different composition of binary solvent mixtures can be rationalized. In highly aqueous solvents, the changes of the titration curves are shown to be mainly due to hydrogen-bonding of the oxygen of the phenoxide anion group by the hydroxylic solvent, Which decreases the energy of the phenoxide anion pi orbital. Thus the phenoxide anion pi orbital cannot cross over the porphyrin Tr orbital being a different HOMO. However, its energy is close to that of the porphyrin pi orbitals. As a result, in the visible region, no charge-transfer band is observed, while in the visible-near region, the Soret peak split into two components. In nonaqueous solvents, the changes are mainly attributed to further deprotonation of pyrrolic-Hs of (OH) 1PH2 by NaOH and coordination with two sodium ions to form the sodium complex of (OH) 1PH2, which turns hyperporphyrin spectra of deprotonated of phenolic-H of (OH)(1)PH2 into three-banded spectra of regular metalloporphyrin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phosphopolyoxomolybdate (P2Mo18) doped polypyrrole (PPy) modified electrode was prepared in aqueous solution by a one-step method. During the polymerization of PPy, P2Mo18 acted as both catalyst and dopant. The electrochemical behavior of the PPy/P2Mo18 modified electrode before and after the overoxidation of PPy was investigated. Both of these showed a catalytic effect toward bromate. The PPy/P2Mo18 composite film was characterized by chronoamperometry, cyclic voltammetry, the rotating disk electrode technique, X-ray photoelectron spectroscopy and Raman spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex fluoride LiBaF3 and LiBaF3:M(M = Eu, Ce) is solvothermally synthesized at 180 degreesC and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy. In the solvothermal process, the solvents, molar ratios of initial mixtures and reaction temperature play important roles in the formation of products. The excitation and emission spectra of the LiBaF3:M(M= Eu,Ce) have been measured by fluorescence spectrophotometer. In the LiBaF3: Eu emission spectra, there is one sharp line emission located at 360 nm arising from f --> f transition of Eu2+ in the host lattice, and typical doublet 5d-4f emission of Ce3+ in LiBaF3 powder is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using the average band-gap model, the chemical bond properties of (La1-x, M-x)(2)CuO4(M=Ba, Sr) were calculated. The calculated covalencies for Cu-O and La-O bond in the compounds are 0.3 and 0.03 respectively. Mossbauer isomer shifts of Fe-57 doped in La2CuO4 and Sn-119 doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in Fe-57 and Sn-119 doped La2CuO4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using the chemical bond theory of complex crystals, the chemical bond properties of REBa2Cu3O7 (RE = Eu, Y) were calculated. The calculated covalencies for Cu(1)-O and Cu(2)-O bond in REBa2Cu3O7 compounds are 0.41 and 0.28 respectively. Mossbauer isomer shifts of Fe-57 doped, and Sn-119 doped in REBa2Cu3O7-x were calculated by using the chemical environmental factor, h(e), defined by covalency and electronic polarizability. Four valence state tin ion and iron ion sites were identified in Fe-57 and Sn-119 doped REBa2Cu3O7-x superconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonyl-iridium half-sandwich compounds, Cp*Ir(CO)(EPh)(2) (E = S, Se), were prepared by the photo-induced reaction of Cp*Ir(CO)(2) with the diphenyl dichalcogenides, E2Ph2, and used as neutral chelating ligands in carbonylmetal complexes such as Cp*Ir(CO)(mu-EPh)(2)[Cr(CO)(4)], Cp*Ir(CO)(mu-EPh)(2)[Mo(CO)(4)] and Cp*Ir(CO)(mu-EPh)(2)[Fe(CO)(3)], respectively. A trimethylphosphane - iridium analogue, Cp*Ir(PMe3)(mu-SeMe)(2)[Cr(CO)(4)], was also obtained. The new heterodimetallic complexes were characterized by IR and NMR spectroscopy, and the molecular geometry of Cp*Ir(CO)(mu-SePh)(2)[Mo(CO)(4)] has been determined by a single crystal X-ray structure analysis. According to the long Ir...Mo distance (395.3(1) Angstrom), direct metal-metal interactions appear to be absent. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this pare earth-HEDTA-serine (Ser) ternary system has been studied by potentiometric titration at 25 degrees C with an ionic strength of 0.15 mol.L-1 (NaCl). The excitation and fluorescence spectra of TbCl3, Tb-Ser, Tb-HEDTA and Tb-HEDTA-Ser have hem determined at room temperature. The stability constants of these ternary complexes have been obtained, It lieu been found that Tb-HEDTA-Ser ternary system exhibit characteriatic fluorescence spectrum of Tb3+ sensitized by two ligands,The results mean that the chemical hood between the control ion and the ligand in this ternary system is predominantly ionic in character,and the energy transfer from ligand to Tb8+ is performed by a kind of abort-range electron exchange action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicalite-I, ZSM-5, and Fe-ZSM-5 zeolites prepared from two different silicon sources are characterized by UV resonance Raman (UVRR) spectroscopy, X-ray diffraction (XRD), electron spin resonance (ESR), and UV/visible diffuse reflectance spectroscopy (UV/Vis DRS). A new technique for investigating zeolitic structure, UV resonance Raman spectroscopy selectively enhances the Raman bands associated with framework iron atoms incorporated into MFI-type zeolites, and it is very sensitive in identifying the iron atoms in the framework of zeolites, while other techniques such as XRD, ESR, and UV/Vis DRS have failed in uncovering trace amounts of iron atoms in the framework of zeolites. (C) 2000 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transformation of zirconia from tetragonal to monoclinic is characterized by UV Raman spectroscopy, visible Raman spectroscopy, and XRD. Electronic absorption Of ZrO2 in the UV region makes UV Raman spectroscopy more sensitive at the surface region than XRD or visible Raman spectroscopy. Zirconia changes from the tetragonal phase to the monoclinic phase with calcination temperatures elevated and monoclinic phase is always detected first by UV Raman spectroscopy for the samples calcined at lower temperatures than that by XRD and visible Raman spectroscopy. When the phase of zirconia changes from tetragonal to monoclinic, the slight changes of the phase at very beginning can be detected by UV Raman spectroscopy. UV Raman spectra clearly indicate that the phase transition takes place initially at the surface regions. It is found that the phase change from tetragonal to monoclinic is significantly retarded when amorphous Zr(OH)(4) was agglomerated to bigger particles and the particle agglomeration of amorphous zirconium hydroxide is beneficial to the stabilization of t-ZrO2 phase.