51 resultados para IA SUPERNOVAE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文以故障实例详细介绍了岛津VD-IA型x社线1行射议信号检测系统一种典型故障的分析及排除方法。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used fifteen years (1993-2007) of altimetric data, combined from different missions (ERS-1/2, TOPEX/Poseidon, Jason-1, and Envisat), to analyze the variability of the eddy kinetic energy (EKE) in the South China Sea (SCS). We found that the EKE ranged from 64 cm(2)/s(2) to 1 390 cm(2)/s(2) with a mean value of 314 cm(2)/s(2). The highest EKE center was observed to the east of Vietnam (with a mean value of 509 cm(2)/s(2)) and the second highest EKE region was located to the southwest of Taiwan Island (with a mean value of 319 cm(2)/s(2)). We also found that the EKE structure is the consequence of the superposition of different variability components. First, interannual variability is important in the SCS. Spectral analysis of the EKE interannual signal (IA-EKE) shows that the main periodicities of the IA-EKE to the east of Vietnam, to the southwest of Taiwan Island, and in the SCS are 3.75, 1.87, and 3.75 years, respectively. It is to the south of Taiwan Island that the IA-EKE signal has the most obvious impact on EKE variability. In addition, the IA-EKE exhibit different trends in different regions. An obvious positive trend is observed along the east coast of Vietnam, while a negative trend is found to the southwest of Taiwan Island and in the east basin of Vietnam. Correlation analysis shows that the IA-EKE has an obvious negative correlation with the SSTA in Nio3 (5A degrees S-5A degrees N, 90A degrees W-150A degrees W). El Nio-Southern Oscillation (ENSO) affects the IA-EKE variability in the SCS through an atmospheric bridge-wind stress curl over the SCS. Second, the seasonal cycle is the most obvious timescale affecting EKE variability. The locations of the most remarkable EKE seasonal variabilities in the SCS are to the east of Vietnam, to the southwest of Taiwan, and to the west of Philippines. To the east of Vietnam, the seasonal cycle is the dominant mechanism controlling EKE variability, which is attributed primarily to the annual cycle there of wind stress curl. In this area, the maximum EKE is observed in autumn. To the southwest of Taiwan Island, the EKE is enlarged by the stronger SCS circulation, which is caused by the intrusion branch from the Kuroshio in winter. Finally, intra-annual and mesoscale variability, although less important than the former, cannot be neglected. The most obvious intra-annual and mesoscale variability, which may be the result of baroclinic instability of the background flow, are observed to the southwest of Taiwan Island. Sporadic events can have an important effect on EKE variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文首次报道了在珊瑚礁向海坡上投放沉积物捕捉器的结果和若干非生源要素如Mo、W、Re、Os、Ni、Ir等在泻湖内外的垂直通量,并在国内首次报道了珊瑚活体培养的结果。将海水、沉降颗粒物、生物和泻湖表层沉积物统一进行系统的研究,重点讨论了珊瑚礁营养动力学过程和维持高生产力的机制等问题。主要的研究内容和结果包括:1. 物理动力过程对营养物质的循环有重要影响物理因素尤其是海水的动力过程更可能是珊瑚礁生长的限制性因素。南沙珊瑚礁的形态及其相关的沉积环境明显受本海区物理过程(海洋和大气)的控制。与此相适应,珊瑚礁生态系统造就了有效保持和快速吸收营养盐的特性。泻湖海水中营养盐分布明显受到泻湖水运动方式的影响,尤其是PO_4-P。2. 营养物质的循环具有快速高效和不均衡的特点 对渚碧礁生源要素的生物地球化学循环研究表明,快速分解、高效再利用是珊瑚礁总生产力很高,净生产力却较低的主要原因。渚碧礁泻湖内两个站的POC分别有93.55%和95.83%在进入沉积物前被消耗,能真正进入沉积物中的却很少。其中99%左右的生物碎屑POC通过生物捕食或腐解作用转变为无机碳重新进入循环。珊瑚礁生态系的高生产力主要是依靠其系统内部快速而高效的再生循环过程维持的。营养盐的原位再生是珊瑚礁营养盐的主要来源,泻湖内PTN和PON释放率分别超过90%和86%;PTP释放率为58.7%~85.2%,多数站位POP的释放率在90%以上。泻湖水中N:P摩尔比平均值仅为8.1,可能存在着氮限制。而在礁坪区,N:P摩尔比的日平均值为26.7,磷的限制作用非常明显。整体来看,氮在泻湖内进入再循环的速度和效率要高于磷2.5~12.8 倍,由于磷缺乏类似于生物固氮作用的持续的供氮机制,磷在珊瑚礁生态系中的限制作用更为明显,至少在礁坪区是如此。珊瑚活体培养的实验表明,珊瑚也存在着短时间里大量消耗营养盐的“奢侈消费”现象。珊瑚对营养盐的吸收速度与营养盐的浓度和珊瑚的种类均有关系。添加营养盐起始浓度高的组营养盐消耗的速度快,与之相适应,其它的各种溶解性营养盐浓度也产生复杂的变化,对迅速稳定水体营养盐浓度产生协同作用,这一过程有助于珊瑚充分吸收突然输入的营养盐。在此实验条件下,珊瑚对含氮盐类的浓度变化要比对磷酸盐更为敏感,可以认为NH_4-N是珊瑚生长的限制性营养盐。在自然界中,这种情况常发生在有大量营养盐输入之后。实验中还发现,对营养盐的吸收速度比营养盐水平更为重要。吸收速度快于某种形态限制性营养盐的输入速度也会导致珊瑚的死亡。反过来讲,珊瑚礁系统可以通过降低对营养盐的消费速度而摆脱营养盐的限制。3. 非生源要素的循环也与生物过种密切相关 非生源要素在海洋颗粒物、生物和沉积物中的分布主要受两种作用的影响,一是颗粒物在生产、沉降和分解过程中的吸附释放作用,另一种是生物的直接利用。颗粒物对IIA族、过渡族的大部分和La系元素都是分布的制约性因素。而IA族、过渡族的一部分和部分非金属元素分布上属于营养盐型,主要受浮游生物直接吸收溶解的盐类(浮游植物)和捕食作用(浮游动物)的影响。轻元素、第四周期的过渡族元素在含量和性质上往往有别于重元素和其它周期的同族过渡元素,更多的参与生物过程。元素分析进一步显示珊瑚礁泻湖内沉降颗粒物主要是自生碎屑,而礁外沉降颗粒物包含了一部分再悬浮的碎屑矿物,但元素在泻湖内外的转移机制是类似的,造成颗粒物来源差别的主要原因是动力学因素。水动力始终是颗粒物中元素垂直转移的主要的、关键性的因素。对于营养盐型的元素,生物的捕食富集是另一个主要控制因素。4. 多种机制的协同作用维持了珊瑚礁生态系的高生产力 考虑到珊瑚礁营养盐的收支并非总是平衡的,珊瑚礁的高生产力的维持可能是通过以珊瑚礁发育位置的选择为基础,“流网”策略、快速吸收营养盐、营养盐的快速循环和高效利用以及“休渔”策略等的协同作用实现的。“休渔”策略是指捕食因素决定的食物链上游生物迁出和初级生产力的恢复过程,当捕食作用高于生产者的生产速度或营养盐供应严重不足时,许多处于食物链上游的游泳动物将迁徙到生产力更高的珊瑚礁中去。大量的生物碎屑和代谢产物中的营养成分重新释放利用。一段时间后又能够重新繁荣起来。由于生物对磷和金属元素等的富集作用,食物链上游生物及其代谢产物作为营养物质输入的一个经常性来源的作用不可忽视。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以大洋采矿前期的湖试为例,介绍了AUV在矿产资源调查和深海采矿中的应用。在深海采矿系统作业前期,利用AUV调查湖底的地形地貌、结核的分布与覆盖率,确定集矿机作业地点的大地坐标。在深海采矿系统作业后期,利用AUV调查集矿机在湖底的行走轨迹和压陷深度,估算回采率。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

应用传统现场总线的工业控制网络无法实现办公室自动化与工业自动化的无缝结合 .由于以太网在确定性、速度和优先法则等方面性能的提高 ,阻碍以太网应用于实时控制环境的难点已被解决 .以太网早已成为商业管理网络的首要选择 ,那么它应用于企业现场设备控制层是控制网络发展的趋势 ,将极大地促进信息从传感器到管理层的集成

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the design of affinity membranes, protein adsorption in membrane affinity chromatography (MAC) was studied by frontal analysis. According to fast mass transfer, small thickness of affinity membranes and high affinity between the protein and the ligand, an ideal adsorption (IA) model was proposed for MAC and was used together with equilibrium-dispersive (E-D) model to describe the adsorption of bovine serum albumin (BSA) onto cellulose diacetate/polyethyleneimine (CA/PEI) blend membranes with and without Cu2+ chelating. E-D model was found to better describe the initial region of experimental breakthrough curves. The influence of axial dispersion was revealed and it showed the importance of design of the module to homogenously distribute feed solution. IA model was found to be better for the whole experimental breakthrough curve. According to it, the capacity of affinity membranes and the specificity of the interaction are of equal importance for the design of affinity membranes. An optimum feed concentration was also found in the operation of MAC. The discrepancy between experimental optimum feed concentrations and predicted ones from IA model may be due to the ignorance of some experimental effects such as axial dispersion.