57 resultados para Hybrid genetic algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

针对对工件有不同交货期要求 ,并对提前 /拖期工件进行惩罚的一类单机调度问题 ,提出了基于遗传算法的优化方法 .提出一种基于“非”一致次序交叉算子的遗传算法 ,用于排序优化 ;在分析了惩罚函数性质的基础上 ,给出了最优开工时间算法 .对不同规模的调度问题 ,应用本文提出的算法与其它算法进行了比较 ,结果表明该方法具有优良的性能 .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

针对传统遗传算法在编码方案及交叉操作中存在的局限性,提出了一种新的遗传算法的改进 方法.该方法(1)以实数编码代替二进制编码,有效地解决了传统遗传算法中二进制编码串的长度与 计算精度、运算量之间的矛盾,(2)根据适应度值对父染色体进行重组操作,克服了传统遗传算法中 交叉操作所存在的盲目性.最后,以求解自然对数和神经网络的训练为例验证了所提出方法的有效 性.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文在分析简单遗传算法 (Simple Genetic Algorithm,SGA)的基础上 ,提出了一种新型结构的两代竞争遗传算法 ,并给出了算法演进的模式定理 .通过理论分析和对 TSP(TravelSalesman Problem,TSP)问题的应用研究 ,表明了该算法具有搜索效率高、鲁棒性强的特点

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在介绍了由文献[1,8]提出来的带有对称编码的基因算法后,本文进一步讨论了这种基因算法中采用的部分基因保留技术和“移民”技术对算法性能的影响,确定了“移民”技术的3个必须步骤、最佳基因保留量(25%)及其选择范围(20~50%).对算法的计算机实验所得到的结果表明,如果不采用这两项技术,带有对称编码的基因算法的性能就会降低,所得到的解的质量就会下降,有时甚至会使新的基因算法表现的象传统的基因算法一样,对象机器人的动力学优化控制这样的问题无能为力。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

许多问题最终可以归结为求解一个组合优化问题,GA是求解组合优化问题的一个强有力的工具,但遗传算法在应用中常出现收敛过慢和封闭竞争问题,本文提出贪心遗传算法。该算法的初始种群建立、交叉和变异等过程,都引入贪心选择策略指导搜索;移民操作向种群引进新的遗传物质,克服了封闭竞争缺点。贪心遗传算法可以避免早熟收敛并改进算法的性能,算法搜索起步阶段的效率是非常高的,本文通过TSP问题仿真试验证明了算法的有效性,在较少的计算量下,得到令人满意的结果。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

研究资源受限系统动态调度问题,针对时序约束问题提出一种并行遗传算法(PGA)。给出满足排序优先次序约束的一种基因编码方法;采用不破坏优先级可行性的交叉操作,并予以证明;建立一种并行处理机制,使搜索避免出现局优现象。在技术允许情况下,单机动态调度引入抢占式加工方式,会一定程度上提高系统的性能。通过仿真试验验证,并行GA算法可兼顾优化效果和计算效率,解决单机动态调度问题。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在香烟包装过程中会出现不合格现象,通过对缺陷的分析,设计了一种用于香烟包装质量检测的改进快速图像匹配算法。文中通过优化相关系数的计算、引入自适应遗传算法、对感兴趣区域匹配检测来提高算法性能,并将算法在MATLAB中编程实现。仿真实验结果表明该图像匹配算法计算速度快、检测精度高,满足香烟包装质量检测的需要。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

独立分量分析是一种有效的人脸特征提取方法。考虑到人脸样本的对称性,本文采用对称独立分量分析的方法对人脸样本进行特征提取。为了提高独立分量分析法表征人脸特征空间的能力,本文采用遗传算法对特征空间进行选择优化,获得最优的人脸特征子集。仿真实验表明,本文提出方法的识别率明显的好于独立分量分析方法的识别率。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

以整车销售物流为背景,探讨多仓库带时窗约束的车辆路线安排问题的解决方法.提出了更为复杂的基于现实的细节性要求的多配送中心开路VRPTW问题模型,并将遗传算法产生部分解和评估完整解的优化解决方法和涌现交叉算子MX1引入到带时窗的多仓库VRP问题优化中,实现了快速全局优化.提出的开路混合配送方法有利于提高车辆满载率,降低回程空载率.同时实现了运输资源的优化配置,提高车辆利用率.计算机仿真实验证明了算法的可行性.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seismic signal is a typical non-stationary signal, whose frequency is continuously changing with time and is determined by the bandwidth of seismic source and the absorption characteristic of the media underground. The most interesting target of seismic signal’s processing and explaining is to know about the local frequency’s abrupt changing with the time, since this kind of abrupt changing is indicating the changing of the physical attributes of the media underground. As to the seismic signal’s instantaneous attributes taken from time-frequency domain, the key target is to search a effective, non-negative and fast algorithm time-frequency distribution, and transform the seismic signal into this time-frequency domain to get its instantaneous power spectrum density, and then use the process of weighted adding and average etc. to get the instantaneous attributes of seismic signal. Time-frequency analysis as a powerful tool to deal with time variant non-stationary signal is becoming a hot researching spot of modern signal processing, and also is an important method to make seismic signal’s attributes analysis. This kind of method provides joint distribution message about time domain and frequency domain, and it clearly plots the correlation of signal’s frequency changing with the time. The spectrum decomposition technique makes seismic signal’s resolving rate reach its theoretical level, and by the method of all frequency scanning and imaging the three dimensional seismic data in frequency domain, it improves and promotes the resolving abilities of seismic signal vs. geological abnormal objects. Matching pursuits method is an important way to realize signal’s self-adaptive decomposition. Its main thought is that any signal can be expressed by a series of time-frequency atoms’ linear composition. By decomposition the signal within an over completed library, the time-frequency atoms which stand for the signal itself are selected neatly and self-adaptively according to the signal’s characteristics. This method has excellent sparse decomposition characteristics, and is widely used in signal de-noising, signal coding and pattern recognizing processing and is also adaptive to seismic signal’s decomposition and attributes analysis. This paper takes matching pursuits method as the key research object. As introducing the principle and implementation techniques of matching pursuits method systematically, it researches deeply the pivotal problems of atom type’s selection, the atom dictionary’s discrete, and the most matching atom’s searching algorithm, and at the same time, applying this matching pursuits method into seismic signal’s processing by picking-up correlative instantaneous messages from time-frequency analysis and spectrum decomposition to the seismic signal. Based on the research of the theory and its correlative model examination of the adaptively signal decomposition with matching pursuit method, this paper proposes a fast optimal matching time-frequency atom’s searching algorithm aimed at seismic signal’s decomposition by frequency-dominated pursuit method and this makes the MP method pertinence to seismic signal’s processing. Upon the research of optimal Gabor atom’s fast searching and matching algorithm, this paper proposes global optimal searching method using Simulated Annealing Algorithm, Genetic Algorithm and composed Simulated Annealing and Genetic Algorithm, so as to provide another way to implement fast matching pursuit method. At the same time, aimed at the characteristics of seismic signal, this paper proposes a fast matching atom’s searching algorithm by means of designating the max energy points of complex seismic signal, searching for the most optimal atom in the neighbor area of these points according to its instantaneous frequency and instantaneous phase, and this promotes the calculating efficiency of seismic signal’s matching pursuit algorithm. According to these methods proposed above, this paper implements them by programmed calculation, compares them with some open algorithm and proves this paper’s conclusions. It also testifies the active results of various methods by the processing of actual signals. The problems need to be solved further and the aftertime researching targets are as follows: continuously seeking for more efficient fast matching pursuit algorithm and expanding its application range, and also study the actual usage of matching pursuit method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The receiver function method applied in researching the discontinuities in upper mantle was systematically studied in this paper. Using the theoretical receiver functions, the characteristics of P410S and P660S phases were analyzed, and the influencing factors for detection of these phases were discussed. The stability of receiver function was studied, and a new computational method of receiver function, RFSSMS (Receiver Function of Stack and Smooth of Multi seismic-records at a Single station), was put forward. We built initial reference velocity model for the media beneath each of 18 seismic stations respectively; then estimated the buried depths of 410-km and 660-km discontinuities(simply marked as '410' and '660') under the stations by using the arrive time differences of P410S and P660S with P. We developed a new receiver function inversion method -PGARFI (Peeling-Genetic Algorithm of Receiver Function Inversion), to obtain the whole crust and upper mantle velocity structure and the depths of discontinuities beneath a station. The major works and results could be summarized as follows: (1) By analysis of the theoretical receiver functions with different velocity models and different ray parameters, we obtain the knowledge: The amplitudes of P410S and P660S phases are decreasing with the increasing of epicentral distance A , and the arrival time differences of these phases with P are shorter as A is longer. The multiple refracted and/or reflected waves yielded on Moho and the discontinuities in the crust interfere the identification of P410S. If existing LVZ under the lithosphere, some multiple waves caused by LVZ will interfere the identification of P410S. The multiple waves produced by discontinuity lied near 120km depth will mix with P410s phase in some range of epicentral distance; and the multiple waves concerned with the discontinuity lied near 210km depth will interfere the identification of P660S. The epicentral distance for P4i0s identification is limited, the upper limit is 80° . The identification of P660S is not restricted by the epicenter distance obviously. The identification of P410S and P6gos in the theoretical receiver functions is interfered weakly from the seismic wave attenuation caused by the media absorption if the Q value in a reasonable range. (2) The stability of receiver function was studied by using synthetic seismograms with different kind of noise. The results show that on the condition of high signal-noise-ratio of seismic records, the high frequency background noise and the low frequency microseism noise do not influence the calculating result of receiver function. But the media "scattering noise" influence the stability of receiver function. When the scattering effect reach some level, the identification of P4iOs and P66os is difficult in single receiver function which is yielded from only one seismic record. We provided a new method to calculate receiver function, that is, with a group of earthquake records, stacking the R and Z components respectively in the frequency domain, and weighted smooth the stacked Z component, then compute the complex spectrum ratio of R to Z. This method can improve the stability of receiver function and protrude the P4i0s and P66os in the receiver function curves. (3) 263 receiver functions were provided from 1364 three component broadband seismograms recorded at 18 stations in China and adjacent areas for the tele-earthquakes. The observed arrival time differences of P410S and P660S with P were obtained in these receiver functions. The initial velocity model for every station was built according to the prior research results. The buried depths of '410' and '660' under a station were acquired by the way of adjusting the depths of these two discontinuities in the initial velocity model until the theoretical arrival time differences of P410S and P660S with P well conformed to the observed. The results show an obvious lateral heterogeneity of buried depths of ' 410' and (660' . The depth of '410' is shallower beneath BJI, XAN, LZH and ENH, but deeper under QIZ and CHTO, and the average is 403km . The average depth of '660' is 663km, deeper under MDJ and MAJO, but shallower under QIZ and HYB. (4) For inversing the whole crust and upper mantle velocity structure, a new inversion method -PGARFI (Peeling-Genetic Algorithm of Receiver Function Inversion) has- been developed here. The media beneath a station is divided into segments, then the velocity structure is inversed from receiver function from surface to deep successively. Using PGARFI, the multi reflection / refraction phases of shallower discontinuities are isolated from the first order refraction transform phase of deep discontinuity. The genetic algorithm with floating-point coding was used hi the inversion of every segment, and arithmetical crossover and non-uniform mutation technologies were employed in the genetic optimization. 10 independent inversions are completed for every segment, and 50 most excellent velocity models are selected according to the priority of fitness from all models produced in the inversion process. The final velocity structure of every segment is obtained from the weighted average of these 50 models. Before inversion, a wide range of velocity variation with depth and depth range of the main discontinuities are given according to priori knowledge. PGARFI was verified with numerical test and applied in the inversion of the velocity structure beneath HIA station down to 700km depth.