217 resultados para HIGH MOLECULAR-WEIGHT
Resumo:
Isothermal and non-isothermal crystallization kinetics of three metallocene-catalysed short-chain-branched polyethylene (SCBPE) fractions with different degree of branching were investigated by using differential scanning calorimetry (DSC). Narrow molecular weight fractions (M-w = 20,000 and M-w/M-n < 1.15) are used and the degree of branching (CH3 per 1000C) are 1.6, 10.4, 40 respectively. The regime I - II transition temperature are 119.8
Resumo:
With the aid of Sanchez-Lacombe lattice fluid theory (SLLFT), the phase diagrams were calculated for the system cyclohexane (CH)/polystyrene (PS) with different molecular weights at different pressures. The experimental data is in reasonable agreement with SLLFT calculations. The total Gibbs interaction energy, g*(12) for different molecular weights PS at different pressures was expressed, by means of a universal relationship, as g(12)* =f(12)* + (P - P-0) nu*(12) demixing curves were then calculated at fixed (near critical) compositions of CH and PS systems for different molecular weights. The pressures of optimum miscibility obtained from the Gibbs interaction energy are close to those measured by Wolf and coworkers. Furthermore, a reasonable explanation was given for the earlier observation of Saeki et al., i.e., the phase separation temperatures of the present system increase with the increase of pressure for the low molecular weight of the polymer whereas they decrease for the higher molecular weight polymers. The effects of molecular weight, pressure, temperature and composition on the Flory Huggins interaction parameter can be described by a general equation resulting from fitting the interaction parameters by means of Sanchez-Lacombe lattice fluid theory.
Resumo:
Poly(butylene succinate), (PBS) with different molecular weight was gamma -irradiated at different temperatures and various doses. PBS with high molecular weight and smaller peak area of crystal melting gave the highest gel content at the same temperatures and dose. A two-step irradiation (irradiation in molten state after irradiation at room temperature) gave the highest gel content in different conditions. This is due to the formation of network structure by pre-irradiation at room temperature that leads to less degradation. PBS prepared by two step irradiation was effective for improvement of heat stability because of high gel content formation. Unirradiated PBS sheets broke immediately at 110 degrees, while the irradiated sample (gel fraction, 50%) by a two step-method did not break even up to 200 minutes at 130 degreesC. The PBS sheets are biodegradable even after crosslinking.
Resumo:
Seven new binuclear titanocenes with different linking bridges, unsubstituted or substituted on the Cp rings, were synthesized and tested for their effect on ethylene polymerization in the presence of MAO. The polyethylenes thus obtained had broad MWD or even bimodal GPC curves, as compared with that from two reference mononuclear titanocenes. This is explained by the difference in degree of steric hindrance around the active center sites imposed by the bulky substituted ligands assuming different configurations in the rotation of the catalyst molecules. Lower polymerization temperatures alleviate the effect of these configuration differences, as reflected in change in MW and (M) over bar(w)/(M) over bar(n). This effect is not caused by decomposition or disproportionation of the binuclear titanocenes as evidenced by the stability of the catalyst.
Resumo:
The electrical conductivity of polyaniline doped with camphor sulfonic acid (PAn-CSA) was studied. The results indicate that there is a critical temperature (T-c) and the temperature dependence of PAn-CSA conductivity shows metallic and semiconductor characteristics above and below T-c, respectively. The higher the molecular weight of PAn, the lower the T-c. The conductivity was enhanced remarkably when PAn-CSA film was stretched, its room temperature conductivity is up to 750 S/cm when elogonation is 60%; however, T-c was independent of elongation.
Resumo:
The glass transition temperature (T-g) of mixtures of polystyrene (PS) with different molecular weight and of blends of poly(2,6-dimethyl-p-phenylene oxide) (PPO) and polystyrene with different molecular weight (DMWPS) was studied by a DSC method. For the whole range of composition, the curves of T-g vs composition obtained by experiment were compared with predictions from the Fox, Gordon-Taylor, Couchman and Lu-Weiss, equations. It was found that the experimental results were not in agreement with those from the Fox, Gordon-TayIor and Couchman equations for the binary mixtures of DMWPS, where the interaction parameter chi was approximately zero. However, for the blends PPO/DMWPS (chi < 0), with an increase of molecular weight of PS, it was shown that the experimental results fitted well with those obtained from the Couchman, Gordon-Taylor and Fox equations, respectively. Furthermore, the Gordon-Taylor equation was nearly identical to the Lu-Weiss equation when \chi\ was not very large. Further, the dependence of the change of heat capacity associated with the glass transition (Delta C-p) on the molecular weight of PS was investigated and an empirical equation was presented. (C) 1997 Elsevier Science Ltd.
Resumo:
A series of macrocyclic arylate dimers have been efficiently synthesized by an interfacial polycondensation of o-phthaloyl dichloride with bisphenols. A combination of GPC, FAB MS, and H-1 and C-13 NMR unambiguously confirmed the cyclic nature. Although single-crystal X-ray analysis of one such macrocycle reveals no severe strain on the cyclic structure, these macrocycles can undergo facile melt polymerization to give high molecular weight polyarylates.
Resumo:
Two unfractionated samples of phenolphthalein poly( aryl ether sulfone) (PES-C) were characterized in CHCl3 at 25 degrees C by applying a recently developed laser light-scattering (LLS) procedure. The Laplace inversion of precisely measured intensity-intensity time correlation function lead us first to an estimate of the characteristic line-width distribution G(Gamma) and then to the translational diffusion coefficient distribution G(D). A combination of static and dynamic LLS results enabled us to determine D = (2.69 x 10(-4))M(-0.553), which agrees with the calibration of D = (2.45 x 10(-4))M(-0.55) previously established by a set of narrowly distributed PES-C samples. Using this newly obtained scaling between D and M, we were able to convert G(D) into a differential weight distribution f(w)(M) for the two PES-C samples. The weight-average molecular weights calculated from f(w)(M) are comparable to that obtained directly from static LLS. Our results showed that using two broadly distributed samples instead of a set of narrowly distributed samples have provided not only similar final results, but also a more practical method for the PES-C characterization. (C) 1997 John Wiley & Sons, Inc.
Resumo:
This experimental study examines the role of formulated molecular weight between crosslink sites on the temperature resistance and mechanical properties of composites based on a polyimide containing a diphenyl thioether unit (PTI). The composites are fabricated by in situ polymerization of monomer reactants (PMR) using three monomeric ingredients: bis(3,4-dicarboxyphenyl) sulfide dianhydride (TDPA); 4,4'-methylene dianiline (MDA); and the monomethyl ester of norbornene anhydride (NE). By changing monomeric molar ratio, three formulations are prepared, in which formulated molecular weight between crosslink sites varies from 1487 to 3446 g mol(-1). Unidirectional composite laminates from each formulation and T300 carbon fibres are compression moulded and cut into a series of test specimens. By measuring the glass transition temperature (T-g), Mode I interlaminar fracture toughness (G(IC)) and other mechanical properties at room and elevated temperatures, the influences of formulated molecular weight on the temperature resistance and mechanical properties of PTI-based composites are investigated.
Resumo:
Using a recently developed laser light-scattering (LLS) procedure, we accomplished the characterization of a broadly distributed unfractionated phenolphthalein poly(aryl ether ketone) (PEK-C) in CHCl3 at 25 degrees C. The laplace inversion of precisely measured intensity-intensity time correlation function from dynamic LLS leads us first to an estimate of the characteristic line-width distribution G(Gamma) and then to the translational diffusion coefficient distribution G(D). By using a previously established calibration of D (cm(2)/s) = 2.37 X 10(-4)M(-0.57), were able to convert G(D) into a differential weight distribution f(w)(M). The weight-average molecular weight M(w) calculated from f(w)(M) agrees well with that directly measured in static LLS. Our results indicate that both the calibration and LLS procedure used in this study are ready to be applied as a routine method for the characterization of the molecular weight distribution of PEK-C. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Ultrahigh molecular weight polyethylene (UHMWPE) has been irradiated (0-40 Mrad) with a Co-60 source at room temperature under vacuum. The crystallinity has been investigated by differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS). The mechanical properties have been determined at room temperature. A significant increase of heat of fusion can be seen at low irradiation doses, which is attributed to crystallization, caused by chain scission during the process of irradiation. It is also observed that the thickness of the lamellae changes with irradiation dose. The Young's modulus has been improved significantly after irradiation at low doses. (C) 1993 John Wiley & Sons, Inc.
Resumo:
Polyvinylidene fluoride (PVF_2) exhibits at least four crystalline phases (α, β, γ, and δ). Among them, β phase is the most important one because it is directly related to the piezoand pyro-electric activities of PVF_2. In recent years, more attention has been paid to the β
Resumo:
Porphyran extracted from Porphyra haitanensis is a sulfated polysaccharide, which possesses excellent antioxidant activities. In this study, we prepared one low-molecular-weight porphyran and its sulfated, acetylated, phosphorylated and benzoylated derivatives. Their antioxidant activities were investigated including scavenging effect of superoxide, hydroxyl and 1,1-diphenyl-2-picrylhydrazyl radicals. The results of chemical analysis and FT-IR spectrums showed the modification was successful. And in addition, we found that certain derivative exhibited stronger antioxidant activity than low-molecular-weight porphyran. The benzoylated derivative showed the most excellent antioxidant activity in three assays, so this derivative needs to be attended to. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
lambda-Carrageenan is a sulfated galactan isolated from some red algae and have been reported to have many kinds of biological activities. lambda-Carrageenan from Chondrus ocellatus, an important economic alga in China and many other parts of the world, was degraded by microwave, and obtained five products that have different molecular weight: 650, 240, 140, 15, 9.3 kDa. Analytical results confirmed that microwave degradation might not change the chemical components and structure of polysaccharides under certain condition. In this study, tumor-inhibiting activities, weight of immune organ, nature killer cells activity, lymphocyte proliferation ratio and pathological slice of spleen and tumor cells from the control group and lambda-carrageenan-treated mice of transplanted S 180 and H22 tumor were investigated. The results indicated that the five lambda-carrageenan samples all showed antitumor and immunomodulation activities in different degree. Molecular weight of polysaccharides had notable effect on the activities. In addition, their antitumor and immunomodulation have some relevance and the five lambda-carrageenans probably inhibited tumor by means of activating the immunocompetence of the body. Among all the experiment results, samples with the highest activities are PC4 and PC5 whose molecular weight are 15 and 9.3 kDa. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Polysaccharides isolated from Porphyra (porphyran) have been known to have diverse biological activities, including immunomodulatory and antioxidant activities. The molecular weight-antiaging activity relationship of degraded porphyrans was examined in this study. Natural porphyran was extracted from P. haitanensis, and then was degraded into different molecular weight fractions, P1 molecular weight 49 kDa, P2 molecular weight 30 kDa, P3 molecular weight 8.2 kDa, by free radical. The influence on life span and vitality of porphyrans were carried out on Drosophila melanogaster. We found that all the degraded porphyrans and natural porphyran (P), added daily to the diet, can significantly increase the life span of D. melanogaster, except for P3. Among them, P1 exhibited the most prolonging life span activity. Furthermore, vitality of middle-aged flies (assessed by measuring their mating capacity) receiving porphyrans was increased considerably in comparison with the controls. Finally, in the heat-stress test, we observed a remarkable increase in survival time, especially in P3-diet groups. These results suggest that porphyrans may be effective in reducing the rate of the aging process and molecular weight has important influence on the effects. It seems that P1 and P2, possessed higher molecular weight, may be more useful in normal metabolic condition and P3, possessed the lowest molecular weight, may be more beneficial for D. melanogaster in stress condition. (C) 2007 Elsevier Ltd. All rights reserved.