168 resultados para Growth process
Resumo:
alpha-Al2O3:C crystal shows excellent thermoluminescence (TL) and optically stimulated luminescence (OSL) properties but the real role carbon plays in this crystal is still not clearly understood so far. In this work, alpha-Al2O3:C crystal doping with different amounts of carbon were grown by the temperature gradient technique, and TL and OSL properties of as-grown crystals were investigated. Additionally, a mechanism was proposed to explain the role of carbon in forming the TL and OSL properties of alpha-Al2O3:C. TL and OSL intensities of as-grown crystals increase with the increasing amount of carbon doping in the crystal, but no shift is found in the glow peak location at 465 K. As the amount of carbon doping in the crystals decreases, OSL decay rate becomes faster. With the increase in heating rate, the integral TL response of as-grown crystals decreases and glow peak shifts to higher temperatures. TL response decrease rate increases with the increasing amount of carbon doping in the crystals. All the TL and OSL response curves of as-grown crystals show linear-sublinear-saturation characteristic, and OSL dose response exhibits higher sensitivity and wider linear dose range than that of TL. The crystal doping with 5000 ppm carbon shows the best dosimetric properties. Carbon plays the role of a dopant in alpha-Al2O3:C crystal and four-valent carbon anions replace the two-valent anions of oxygen during the crystal growth process, and large amounts of oxygen vacancies were formed, which corresponds to the high absorption coefficient of F and F+ centers in the crystals.
Resumo:
用离子束溅射法制备了锆单层薄膜.用设计新型夹具和预置种子方法,对薄膜中结瘤微缺陷的生长过程进行了研究.在高分辨率光学显微镜和扫描电子显微镜下观察发现,结瘤在其生长初期呈现出分形的特征.用分子动力学和薄膜生长的扩散限制聚集模型,薄膜中结瘤微缺陷成核时的分形现象得到了很好的解释.
Resumo:
Laterally-coupled distributed feedback (LC-DFB) laser diodes made without an epitaxial re-growth process have the advantage of a simple fabrication process. In this paper, two-dimensional optical field distribution of the fundamental quasi TE (transverse electric) mode is calculated by means of a semivectorial finite-difference method (SV-FDM). The dependence of the effective coupling coefficient (kappa(eff)) on the dutycycle of first-, second- and third-order LC-DFB LDs is investigated using modified coupled wave equations.
Resumo:
A novel broadband superluminescent diode (SLD), which has a symmetric graded tensile-strained bulk InGaAs active region, is developed. The symmetric-graded tensile-strained bulk InGaAs is achieved by changing the group III TMGa source flow only during its growth process by low-pressure metalorganic vapor-phase epitaxy (LP-MOVPE), in which the much different tensile strain is introduced simultaneously. At 200mA injection current, the full width at half maximum (FWHM) of the emission spectrum of the SLID can be up to 122nm, covering the range of 1508-1630nm, and the output power is 11.5mW.
Resumo:
Metal-semiconductor-metal (MSM) structures were fabricated by RF-plasma-assisted MBE using different buffer layer structures. One type of buffer structure consists of an AlN high-temperature buffer layer (HTBL) and a GaN intermediate temperature buffer layer (ITBL), another buffer structure consists of just a single A IN HTBL. Systematic measurements in the flicker noise and deep level transient Fourier spectroscopy (DLTFS) measurements were used to characterize the defect properties in the films. Both the noise and DLTFS measurements indicate improved properties for devices fabricated with the use of ITBL and is attributed to the relaxation of residue strain in the epitaxial layer during growth process. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
GaN nanowires have been grown with and without In as an additional source. The effects of In surfactant on the crystal quality and photoluminescence property of GaN nanowires are reported for the first time. X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and photoluminescence measurements are employed to analyse the products. The results show that introducing a certain amount of In surfactant during the growth process can improve the crystal quality of the GaN nanowires, and enhance the photolurainescence of them. In addition, the as-prepared GaN nanowires have the advantage of being easy to be separated, which will benefit the subsequent nanodevice fabrication.
Influence of AlN thickness on strain evolution of GaN layer grown on high-temperature AlN interlayer
Resumo:
The strain evolution of a GaN layer grown on a high- temperature AlN interlayer with varying AlN thickness by metalorganic chemical vapour deposition is investigated. In the growth process, the growth strain changes from compression to tension in the top GaN layer, and the thickness at which the compressive- to- tensile strain transition takes place is strongly influenced by the thickness of the AlN interlayer. It is confirmed from the x- ray diffraction results that the AlN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer. The strain transition process during the growth of the top GaN layer can be explained by the threading dislocation inclination in the top GaN layer. Adjusting the AlN interlayer thickness could change the density of the threading dislocations in the top GaN layer and then change the stress evolution during the top GaN layer's growth.
Influences of reactor pressure of GaN buffer layers on morphological evolution of GaN grown by MOCVD
Resumo:
The morphological evolution of GaN thin films grown on sapphire by metalorganic chemical vapor deposition was demonstrated to depend strongly on the growth pressure of GaN nucleation layer (NL). For the commonly used two-step growth process, a change in deposition pressure of NL greatly influences the growth mode and morphological evolution of the following GaN epitaxy. By means of atomic force microscopy and scanning electron microscope, it is shown that the initial density and the spacing of nucleation sites on the NL and subsequently the growth mode of FIT GaN epilayer may be directly controlled by tailoring the initial low temperature NL growth pressure. A mode is proposed to explain the TD reduction for NL grown at relatively high reactor pressure. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline Si nanowires (poly SiNWS) were successfully synthesized by plasma-enhanced chemical vapor deposition (PECVD) at 440degreesC using silane as the Si source and Au as the catalyst. The diameters of Si nanowires range from 15 to 100nm. The growth process indicates that to fabricate SiNWS by PECVD, pre-annealing at high temperature is necessary. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Self-organized InAs quantum dots (QDs) have been fabricated by molecular beam epitaxy and characterized by photoluminescence (PL). For both single- and multi-layer QDs, PL intensity of the first excited state is larger than that of the ground state at 15 K. Conversely, at room temperature (RT), PL intensity of the first excited state is smaller than that of the ground state. This result is explained by the phonon bottleneck effect. To the ground state, the PL intensities of the multi-layer QDs are larger than that of the single-layer QDs at 15 K, while the intensities are smaller than that of the single-layer QDs at RT. This is due to the defects in the multi-layer QD samples acting as the nonradiative recombination centers. The inter-diffusion of Ga and In atoms in the growth process of multi-layer QDs results in the PL blueshift of the ground state and broadening of the full-width at half-maximum (FWHM), which can be avoided by decreasing the spacers' growth temperature. At the spacers' growth temperature of 520degreesC, we have prepared the 5-layer QDs which emit near 1.3 mum with a FWHM of 31.7 meV at RT, and 27.9 meV at 77 K. (C) 2002 Published by Elsevier Science B.V.
Resumo:
High-quality GaN epilayers were grown on Si (1 1 1) substrate by metalorganic chemical vapor deposition. The growth process was featured by using an ultrathin AlN wetting layer (WL) in combination with a low-temperature (LT) GaN nucleation layer (NL). The full-width at half-maximum (FWHM) of the X-ray rocking curve for the GaN (0 0 0 2) diffraction was 15 arcmin. The dislocation density estimated from TEM investigation was found to be of the order of 10(9)cm(-2). The FWHM of the dominant band edge emission peak of the GaN was measured to be 47 meV by photoluminescence measurement at room temperature. The ultrathin AlN WL was produced by nitridation of the aluminium pre-covered substrate surface. The reflection high-energy electron diffraction showed that the AlN WL was wurtzite and the surface morphology was like the nitridated surface of sapphire by the atomic force microscopy measurement. X-ray photoelectron spectroscopy measurement showed that Si and SixNy at a certain concentration were intermixed in the AlN WL. This study suggests that by employing an appropriate WL combined with a LT NL, high-quality heteroepitaxy is achievable even with large mismatch. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Using Raman spectroscopy we have analysed the strain status of GaN films grown on sapphire substrates by NH3 source molecular beam epitaxy (MBE). In addition to the expected compressive biaxial strain, in some cases GaN films grown on c-face sapphire substrates suffer from serious tensile biaxial strain. This anomalous behaviour has been well interpreted in terms of interstitial hydrogen-dependent lattice dilation. The hydrogen concentration in the films is measured by nuclear reaction analysis (NRA). With increasing hydrogen incorporation, the residual compressive biaxial strain is first further relaxed, and then turns into tensile strain when the hydrogen contaminant exceeds a critical concentration. The hydrogen incorporation during the growth process is found to be growth-rate dependent, and is supposed to be strain driven. We believe that the strain-induced interstitial incorporation is another way for strain relaxation during heteroepitaxy, besides the two currently well known mechanisms: formation of dislocations and growth front roughening.
Resumo:
InGaAs/GaAs quantum dots (QDs) superlattice grown by molecular beam epitaxy (MBE) at different substrate temperatures for fabricating 8-12 mu m infrared photodetector were characterized by transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL). High-quality QDs superlattice can be achieved by higher growth temperature. Cross-sectional TEM shows the QDs in the successive layers are vertically aligned along growth direction. Interaction of partial vertically aligned columns leads to a perfect vertical ordering. With increasing number of bilayers, the average QDs size becomes larger in height and rapidly saturates at a certain value, while average lateral length nearly preserves initial size. This change leads to the formation of QDs homogeneous in size and of a particular shape. The observed self-organizations are attributed to the effect of strain distribution at QDs on the kinetic growth process. DCXRD measurement shows two sets of satellite peaks which corresponds to QDs superlattice and multi quantum wells formed by the wetting layers. Kinematical simulations of the wetting layers indicate that the formation of QDs is associated with a decrease of the effective indium content in the wetting layers. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
InAs quantum dots grown on InAlAs lattice-matched to (0 0 1) InP substrates by molecular beam epitaxy are investigated by double-crystal X-ray diffraction, photoluminescence and transmission electron microscopy. The growth process is found to follow the Stranski-Krastanow growth mode. The islands formation is confirmed by the TEM measurements. Strong radiative recombination from the quantum dots and the wetting layer is observed, with room temperature PL emission in the 1.2-1.7 mu m region, demonstrating the potential of the InAs/InAlAs QDs for optoelectronic device applications. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We investigated AlGaN layers grown by metalorganic chemical vapor deposition (MOCVD) on high temperature (HT-)GaN and AlGaN buffer layers. On GaN buffer layer, there are a lot of surface cracking because of tensile strain in subsequent AlGaN epilayers. On HT-AlGaN buffer layer, not only cracks but also high densities rounded pits present, which is related to the high density of coalescence boundaries in HT-AlGaN growth process.The insertion of interlayer (IL) between AlGaN and the GaN pseudosubstrate can not only avoid cracking by modifying the strain status of the epilayer structure, but also improved Al incorporation efficiency and lead to phase-separation. And we also found the growth temperature of IL is a critical parameter for crystalline quality of subsequent AlGaN epilayer. Low temperature (LT-) A1N IL lead to a inferior quality in subsequent AlGaN epilayers.