207 resultados para Green body
Resumo:
Photosynthetic responses of rewetted Nostoc flagelliforme to CO2, desiccation, light and temperature were investigated under emersed conditions in order to characterize its ecophysiological behaviour in nature. Net photosynthesis increased to a maximum rate at about 30 % water loss, then decreased, while dark respiration always decreased with the progress of desiccation. Light-saturated photosynthesis and dark respiration were significantly reduced at 8 degreesC, but remained little affected by changes of temperature within the range of 15-35 degreesC. Photosynthetic efficiency (alpha) was maximal at the beginning of desiccation and then reduced with increased water loss. Saturating irradiance for photosynthesis was about 194-439 mu mol quanta m(-2) s(-1), being maximal at about 30 % water loss. No photoinhibition was observed at irradiances up to 1140 mu mol m(-2) s(-1). Light compensation points were about 41-93 mu mol m(-2) s(-1). Photosynthesis of N. flagelliforme was CO2-limited at the present atmospheric CO2 level. The CO2-saturated photosynthesis increased with increase of irradiance (190-1140 mu mol m(-2) s(-1)) and temperature (8-25 degreesC) and decreased significantly with water loss (0-75 %). Photosynthetic affinity for CO2 was sensitive to temperature and irradiance. The CO2 compensation point (Gamma) increased significantly with increased temperature and was insensitive to irradiance. Desiccation did not affect Gamma values before water loss exceeded 70 %. Photorespiratory CO2 release did not occur in N. flagelliforme at the current atmospheric CO2 level.
Resumo:
To investigate the nature of compenstory growth in fish, an 8 week study at 28 degreesC was performed on juvenile gibel carp Carassius auratus gibelio weighing 6.6 g. Fish were starved for 0 (control), 1 (Sl)or 2 (S2) weeks and then re-fed to satiation For 5 weeks. Weekly changes in weight gain, feed intake and body composition were monitored during re-feeding. No significant difference was found in final body weight between the three groups, indicating complete compensation in the deprived fish, The deprived groups caught up in body weight with that of the control after 2 weeks of re-feeding. Body fat:lean body mass ratio was restored to the control level within 1 week of re-feeding. In the re-feeding period, weekly gains in body weight, protein. lipid, ash and energy in the S1 group were significantly higher than in the controls for 1 week. For the S2 group, weekly gains in body weight. lipid. ash and energy were higher than in the controls for 2 weeks, and gain in protein was higher than in the controls for 3 weeks, though gain in body energy became elevated again during the last 2 weeks of the experiment. Feed intake remained higher than the control level for 3 weeks in the S1 group and 3 weeks in the SZ group. Growth efficiency was not significantly different among the three groups in any of the weeks during re-feeding. Compensatory responses in growth and especially feed intake tended to last longer than the recovery of body composition. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
F-4 generation of human growth hormone (hGH) gene-transgenic red common carp, and the non-transgenic controls were fed for 8 weeks on purified diets with 20%, 30% or 40% protein. Analysis of whole-body amino acids showed that the proportions of lysine, leucine, phenylalanine, valine and alanine, as percentages of body protein, increased significantly, while those of arginine, glutamic acid and tyrosine decreased, with increases in dietary protein level in at least one strain of fish. Proportions of the other amino acids were unaffected by the diets. The proportions of lysine and arginine were significantly higher, while those of leucine and alanine were lower in the transgenics than in the controls in at least one diet group. Proportions of the other amino acids were unaffected by strain. The results suggest that the whole-body amino acid profile of transgenic carp, when expressed as proportions of body protein, was in general, similar to that of the non-transgenic controls. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Green-lipped mussels (Perna viridis) were collected from a site in Hong Kong which is relatively free from polycyclic aromatic hydrocarbon (PAH) contamination, and maintained in situ at this and three other sites with different degrees of PAH contamination. The transplanted mussels were retrieved after a 30-day field exposure. DNA adducts in the gill tissues were quantified, and tissue concentrations of benzo[a]pyrene as well as total PAHs (with potential carcinogenicity) determined for individual mussels. Results indicate that (1) tissue concentration of PAHs and adduct levels in mussels collected from a single site can be highly variable; and (2) adduct levels were related to tissue concentrations of benzo[a]pyrene as well as total PAHs of individual animals.
Resumo:
Clinorotation experiments were established to simulate microgravity on ground. It was found that there were obvious changes of Dunaliella salina FACHB435 cells and their metabolic characteristics during clinorotation. The changes included the increases of glycerol content, the rate of H+ secretion and PM H+-ATPase activity, and the decrease of ratio of the plasma membrane (PM) phospholipid to PM protein. These results indicated that microgravity was a stress environment to Dunaliella salina. It is deduced that it would be possible to attribute the effect of microgravity on algal cells to the secondary activation of water stress.
Resumo:
Nostoc flagelliforme, which is distributed in arid or semiarid steppes of the west and west-northern parts of China, has been used by the Chinese as a food delicacy and for its herbal values for hundreds of years. However, the resource is being over-exploited and is diminishing, while the market demands are increasing with the economic growth. This review deals mainly with the Chinese studies on the ecology, physiology, reproduction, morphology and culture of this species in an attempt to promote research and development of its cultivation technology.
Resumo:
A growth trial was conducted at 30 degrees C to investigate the effect of body size on growth and energy budget of Nile tilapia. The average initial body weights of the four size groups tested were 9.3, 34.1, 80.3 and 172.4 g, respectively. Fish were fed to satiation twice a day with a diet containing 35.6% crude protein. Food consumption (C-max: kJ/day) increased with body size (W: g) according to the relationship: Ln C-max = 1.45 + 0.42 LnW. The final body contents of dry matter, crude protein and ash per unit body weight increased with increasing body size while contents of fat and energy were independent of body size. Specific growth rates of wet weight, dry weight, protein and energy decreased as the fish increased in size. Feed efficiencies in wet weigh, dry weight and crude protein decreased with increasing body size, while that of energy remained unchanged. The proportions of energy intake allocated to the various components (faecal energy, excretory energy, heat production and recovered energy) of the energy budget were not significantly affected by body size, and the average budget was: 100IE-18.5(+/- 1.33)FE + 5.9 (+/- 3.09)(ZE + UE) + 49.3(+/- 3.77)HE + 26.3(+/- 6.23)RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. It is suggested that the decrease in growth rate in larger fish is mainly due to the decrease in relative food intake. (C) 1997 Elsevier Science B.V.
Resumo:
Growth and energy budget were measured for three sizes(2.4, 11.1 and 22.5 g) of juvenile white sturgeon Acipenser transmontanus held at 18.5 degrees C and fed tubificid worms at different levels ranging from starvation to ad libitum. For each size-class, specific growth rate increased linearly with increasing ration, and conversion efficiency was highest at the maximum ration. Growth rate decreased with increasing fish size at the maximum ration, but increased with size al each restricted ration. Conversion efficiency increased with increasing ration for each size-class and was usually highest at the maximum ration. Faecal production accounted for 3.2-5.2% of food energy. The proportion of food energy lost in nitrogenous excretion decreased with increasing ration. With increases in ration, the allocation of metabolizable energy to metabolism decreased, while that to growth increased. Fish size had no significant effect on the allocation of metabolizable energy to metabolism or growth. Al the maximum ration, on average 64.9% of metabolizable energy was spent on metabolism, and 35.1% on growth. (C) 1996 The Fisheries Society of the British Isles
Resumo:
Studies on mixed mass cultivation of Anabaena spp. on a large scale (5170 m2) were conducted continuously for 3 years. Under the continental monsoon climate in northern subtropics (30-degrees-N, 115-degrees-E), 7-11 g dry weight m-2 day-1 of microalgal biomass on average was harvested in simple plastic greenhouses in the effective growth days during the warmer seasons. The maximum productivity was 22 g m-2 day-1 in the middle of summer. Observations on the productive properties of strains of Anabaena spp. indicated that they were different from and could compensate for each other in their productivities and adaptations to the seasonal changes. With different lining materials (PVC sheets, concrete, sand and soil) in the culture ponds, no significant variation of productivity was found, but bubbling with biogas in the middle of the day and the application of some growth regulating substances (2,4-D, NaHSO3 and extracts of oyster mushroom spawn) was able to improve the production. The cost of microalgal biomass in this way was around 0.75-1.0 US dollar(s) per kilogram.
Resumo:
Toxic cyanobacteria (blue-green algae) waterblooms have been found in several Chinese water bodies since studies began there in 1984. Waterbloom samples for this study contained Anabaena circinalis, Microcystis aeruginosa and Oscillatoria sp. Only those waterblooms dominated by Microcystis aeruginosa were toxic by the intraperitoneal (i.p.) mouse bioassay. Signs of poisoning were the same as with known hepatotoxic cyclic peptide microcystins. One toxic fraction was isolated from each Microcystis aeruginosa sample. Two hepatotoxic peptides were purified from each of the fractions by high-performance liquid chromatography and identified by amino acid analysis followed by low and high resolution fast-atom bombardment mass spectrometry (FAB-MS). LD50 i.p. mouse values for the two toxins were 245-mu-g/kg (Toxin A) and 53-mu-g/g (Toxin B). Toxin content in the cells was 0.03 to 3.95 mg/g (Toxin A) and 0.18 to 3.33 mg/kg (Toxin B). The amino acid composition of Toxin A was alanine [1], arginine [2], glutamic acid [1] and beta-methylaspartic acid [1]; for Toxin B it was the same, except one of the arginines was replaced with a leucine. Low- and high-resolution FAB-MS showed that the molecular weights were 1,037 m/z (Toxin A) and 994 m/z (Toxin B), with formulas of C49H76O12N13 (Toxin A) and C49H75O12N10 (Toxin B). It was concluded that Toxin A is microcystin-RR and Toxin B is microcystin-LR, both known cyclic heptapeptide hepatotoxins isolated from cyanobacteria in other parts of the world. Sodium borohydride reduction of microcystin-RR yielded dihydro-microcystin-RR (m/z = 1,039), an important intermediate in the preparation of tritium-labeled toxin for metabolism and fate studies.