65 resultados para Giant mine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the relationship between the properties of the isovector giant dipole resonance of finite nuclei and the symmetry energy in the framework of the relativistic mean field theory with six different parameter sets of nonlinear effective Lagrangian. A strong linear correlation of excited energies of the dipole resonance in finite nuclei and symmetry energy at and below the saturation density is found. This linear correlation leads to the symmetry energy at the saturation density at the interval 33.0MeV <= S(po) <= 37.0 MeV. The comparison to the present experimental data in the soft dipole mode of (132) Sn constrains approximately the symmetry energy at p = 0.1 fm(-3) at the interval 21.2MeV similar to 22.5 MeV. It is proposed that a precise measurement of the soft dipole mode in neutron rich nuclei could set up an important constraint on the equation of state for asymmetric nuclear matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ministry of Science and Technology of China [2008BAK47B02, 2008BAC44B04, 2008BAK50B06, 2008BAC43B01, 2006BAC08B06]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 mu m large holes; the net can be silicified. The silica layers forming the lamellar zone are approximate to 5 mu m thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3 m and diameters of 8.5 mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size tendency. The apical elongation of the spicule proceeds by piling up cone-like structural units formed from silica. As a support of the assumption that in the extracellular space silicatein(-like) molecules exist that associate with the external surface of the respective spicule immunogold electron microscopic analyses were performed. With the primmorph system from Suberites domuncula we show that silicatein(-like) molecules assemble as string- and net-like arrangements around the spicules. At their tips the silicatein(-like) molecules are initially stacked and at a later stay also organized into net-like structures. Silicatein(-like) molecules have been extracted from the giant basal spicule of Monorhaphis. Applying the SDS-PAGE technique it could be shown that silicatein molecules associate to dimers and trimers. Higher complexes (filaments) are formed from silicatein(-like) molecules, as can be visualized by electron microscopy (SEM). In the presence of ortho-silicate these filaments become covered with 30-60 nm long small rod-like/cuboid particles of silica. From these data we conclude that the apical elongation of the spicules of Monorhaphis proceeds by piling up cone-like silica structural units, whose synthesis is mediated by silicatein(-like) molecules. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicateins, members of the cathepsin L family, are enzymes that have been shown to be involved in the biosynthesis/condensation of biosilica in spicules from Demospongiae (phylum Porifera), e. g. Tethya aurantium and Suberites domuncula. The class Hexactinellida also forms spicules from this inorganic material. This class of sponges includes species that form the largest biogenic silica structures on earth. The giant basal spicules from the hexactinellids Monorhaphis chuni and Monorhaphis intermedia can reach lengths of up to 3 m and diameters of 10 mm. The giant spicules as well as the tauactines consist of a biosilica shell that surrounds the axial canal, which harbours the axial filament, in regular concentric, lamellar layers, suggesting an appositional growth of the spicules. The lamellae contain 27 kDa proteins, which undergo post-translational modification (phosphorylation), while total spicule extracts contain additional 70 kDa proteins. The 27 kDa proteins cross-reacted with anti-silicatein antibodies. The extracts of spicules from the hexactinellid Monorhaphis displayed proteolytic activity like the silicateins from the demosponge S. domuncula. Since the proteolytic activity in spicule extracts from both classes of sponge could be sensitively inhibited by E-64 (a specific cysteine proteinase inhibitor), we used a labelled E-64 sample as a probe to identify the protein that bound to this inhibitor on a blot. The experiments revealed that the labelled E-64 selectively recognized the 27 kDa protein. Our data strongly suggest that silicatein(-related) molecules are also present in Hexactinellida. These new results are considered to also be of impact for applied biotechnological studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (Triticum aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RPLP1 is one of acidic ribosomal phosphoproteins encoded by RPLP1 gene, which plays an important role in the elongation step of protein synthesis. The cDNA of RPLP1 was cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) using RT-PCR technology, which was also sequenced, analyzed preliminarily and expressed in E. coli. The cDNA fragment cloned is 449bp in size, containing an open reading frame of 344bp encoding 114 amino acids. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to other five species studied, including Homo sapiens, Mus musculus, Rattus norvegicus, Bos Taurus and Sus scrofa. The homologies for nucleotide sequences of Giant Panda PPLP1 to that of these species are 92.4%, 89.8%, 89.0%, 91.3% and 87.5%, while the homologies for amino acid sequences are 96.5%, 94.7%, 95.6%, 96.5% and 88.6%. Topology prediction showed there are three Casein kinase II phosphorylation sites and two N-myristoylation sites in the RPLP1 protein of the Giant Panda (Ailuropoda melanoleuca). The RPLP1 gene was overexpressed in E. coli and the result indicated that RPLP1 fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 18kDa polypeptide, which was in accordance with the predicted protein and could also be used to purify the protein and study its function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayan Obo REE-Nb-Fe ore deposit is the largest REE deposit in the world. Owing to its unique type and tremendous economic value, this deposit has widely attracted interests from geological researchers and vast amount of scientific data have been accumulated. However, its genesis, especially ore-forming age and REE sources, have been under dispute for a long time. On the basis of previous research works, this paper mainly conducts studies on the Early Paleozoic ore-forming event in the Bayan Obo deposit. The following results and conclusions can be suggested: Sm-Nd isotopic analytical results of bastnaesite, beloeilite, albite and fluorite samples from a coarse-crystalline ore lode present an isochron age of 436±35Ma. Besides, Rb-Sr isotope dating of the coarse-crystalline biotite lode that intruded into banded ores gives an isochron age of 459±39Ma. The two ages verify the exist of Early Paleozoic ore-forming event at Bayan Obo, which characterized by extensive netted mineralization of REE fluorocarbonates, aeschynite and monazite, accompanied by widely fluorite-riebeckite-aegirine-apatite alteration. Sr-Nd isotope composition of vein minerals is located between EMI and ancient lower crust component in the ISr(t)-εNd(t) correlation diagram, indicating that there is a crustal contamination during veined mineralization. A large area late Paleozoic granitoids are distributed in the southeast region of east open pit of the mine. The granitoids intruded directly into the ore-bearing dolomite, and produced intense skarnization. Moreover, at 650-660m of the drill core on 22 line and 1598m level flat in the south of East Open Pit, we firstly found skarnization rocks. Single grain and low background Rb-Sr isochrone dating on phlogopite in skarn gives 309±12Ma. Considering the intruded contacting relationship, the late Paleozoic granitoids, already extended to the under part of REE ore bodies, must be posterior to the latest intense REE mineralization, and is only a destructive tectonic and magmatic activity. Fluid inclusion types of fluorite in the Bayan Obo deposit consist of multiphase daughter mineral-bearing inclusion, two or three phase CO2-bearing inclusion and two phase aqueous inclusion. Petrography, laser Raman analysis and microthermometry study indicate that the fluids involving in REE-Nb-Fe mineralization at Bayan Obo might be mainly of H2O-CO2-NaCl-(F-REE) system. The presence of REE-carbonate as a daughter mineral in fluid inclusions shows that the original ore-forming fluids are rich in REE elements.