50 resultados para Generalized Gross Laplacian


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eddy covariance technique provides measurements of net ecosystem exchange (NEE) Of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number Of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims Rheum, a highly diversified genus with about 60 species, is mainly confined to the mountainous and desert regions of the Qinghai-Tibetan plateau and adjacent areas. This genus represents a good example of the extensive diversification of the temperate genera in the Qinghai-Tibetan plateau, in which the forces to drive diversification remain unknown. To date, the infrageneric classification of Rheum has been mainly based on morphological characters. However, it may have been subject to convergent evolution under habitat pressure, and the systematic position of some sections are unclear, especially Sect. Globulosa, which has globular inflorescences, and Sect. Nobilia, which has semi-translucent bracts. Recent palynological research has found substantial contradictions between exine patterns and the current classification of Rheum. Two specific objectives of this research were (1) to evaluate possible relationships of some ambiguous sections with a unique morphology, and (2) to examine possible occurrence of the radiative speciation with low genetic divergence across the total genus and the correlation between the extensive diversification time of Rheum and past geographical events, especially the recent large-scale uplifts of the Qinghai-Tibetan Plateau.Methods The chloroplast DNA trnL-F region of 29 individuals representing 26 species of Rheum, belonging to seven out of eight sections, was sequenced and compared. The phylogenetic relationships were further constructed based on the sequences obtained.Key Results Despite the highly diversified morphology, the genetic variation in this DNA fragment is relatively low. The molecular phylogeny is highly inconsistent with gross morphology, pollen exine patterns and traditional classifications, except for identifying all samples of Sect. Palmata, three species of Sect. Spiciformia and a few species of Sect. Rheum as corresponding monophyletic groups. The monotypic Sect. Globulosa showed a tentative position within the clade comprising five species of Sect. Rheum. All of the analyses revealed the paraphyly of R. nobile and R. alexandrae, the only two species of Sect. Nobilia circumscribed by the possession of large bracts. The crude calibration of lineages based on trnL-F sequence differentiation implied an extensive diversification of Rheum within approx. 7 million years.Conclusions Based on these results, it is suggested that the rich geological and ecological diversity caused by the recent large-scale uplifts of the Qinghai-Tibetan Plateau since the late Tertiary, coupled with the oscillating climate of the Quaternary stage, might have promoted rapid speciation in small and isolated populations, as well as allowing the fixation of unique or rare morphological characters in Rheum. Such a rapid radiation, combined with introgressive hybridization and reticulate evolution, may have caused the transfer of cpDNA haplotypes between morphologically dissimilar species, and might account for the inconsistency between morphological classification and molecular phylogeny reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured the net ecosystem CO2 exchange (NEE) in an alpine meadow ecosystem (latitude 37degrees29'-45'N, longitude 101degrees12'-23'E, 3250 m above sea level) on the Qinghai-Tibetan Plateau throughout 2002 by the eddy covariance method to examine the carbon dynamics and budget on this unique plateau. Diurnal changes in gross primary production (GPP) and ecosystem respiration (R-e) showed that an afternoon increase of NEE was highly associated with an increase of R-e. Seasonal changes in GPP corresponded well to changes in the leaf area index and daily photosynthetic photon flux density. The ratio of GPP/R-e was high and reached about 2.0 during the peak growing season, which indicates that mainly autotrophic respiration controlled the carbon dynamics of the ecosystem. Seasonal changes in mean GPP and R-e showed compensatory behavior as reported for temperate and Mediterranean ecosystems, but those of GPP(max) and R-emax were poorly synchronized. The alpine ecosystem exhibited lower GPP (575 g C m(-2) y(-1)) than, but net ecosystem production (78.5 g C m(-2) y(-1)) similar to, that of subalpine forest ecosystems. The results suggest that the alpine meadow behaved as a CO2 sink during the 1-year measurement period but apparently sequestered a rather small amount of C in comparison with similar alpine ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attaining sufficient accuracy and efficiency of generalized screen propagator and improving the quality of input gathers are often problems of wave equation presack depth migration, in this paper,a high order formula of generalized screen propagator for one-way wave equation is proposed by using the asymptotic expansion of single-square-root operator. Based on the formula,a new generalized screen propagator is developed ,which is composed of split-step Fourier propagator and high order correction terms,the new generalized screen propagator not only improving calculation precision without sharply increasing the quantity of computation,facilitates the suitability of generalized screen propagator to the media with strong lateral velocity variation. As wave-equation prestack depth migration is sensitive to the quality of input gathers, which greatly affect the output,and the available seismic data processing system has inability to obtain traveltimes corresponding to the multiple arrivals, to estimate of great residual statics, to merge seismic datum from different projects and to design inverse Q filter, we establish difference equations with an embodiment of Huygens’s principle for obtaining traveltimes corresponding to the multiple arrivals,bring forward a time variable matching filter for seismic datum merging by using the fast algorithm called Mallat tree for wavelet transformations, put forward a method for estimation of residual statics by applying the optimum model parameters estimated by iterative inversion with three organized algorithm,i.e,the CMP intertrace cross-correlation algorithm,the Laplacian image edge extraction algorithm,and the DFP algorithm, and present phase-shift inverse Q filter based on Futterman’s amplitude and phase-velocity dispersion formula and wave field extrapolation theory. All of their numerical and real data calculating results shows that our theory and method are practical and efficient. Key words: prestack depth migration, generalized screen propagator, residual statics,inverse Q filter ,traveltime,3D seismic datum mergence