117 resultados para Gd~(3 )
Resumo:
A variety of uniform lanthanide orthoborates LnBO(3) (Ln = Gd, Nd, Sm, Eu, Tb, and Dy) microplates have been successfully prepared by a general and facile conversion method. One-dimensional (ID) lanthanide hydroxides were first prepared through a simple hydrothermal process. Subsequently, uniform LnBO(3) microplates were synthesized at the expense of the ID precursors during a hydrothermal conversion process. The whole process in this method was carried out in aqueous condition without the use of any organic solvents, surfactant, or catalyst. The as-obtained rare earth ions doped GdBO3 and TbBO3 microplates show strong light emissions with different colors coming from different activator ions under ultraviolet excitation or low-voltage electron beam excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel display devices.
Resumo:
Uniform Gd(OH)(3) nanotubes have been prepared via a simple wet-chemical route at ambient pressure and low temperature, without any catalysts, templates, or substrates, in which Gd(NO3)(3) was used as the gallium source and ammonia as the alkali. SEM and TEM images indicate that the as-obtained Gd(OH)3 entirely consists of uniform nanotubes in high yield with diameters of about 40 nm and lengths of 200-300 nm. The temperature-dependent morphological evolution and the formation mechanism of the Gd(OH)(3) nanotubes were investigated in detail. Furthermore, the Gd2O3 and Eu3+-doped Gd2O3 nanotubes, which inherit their parents' morphology, were obtained during a direct annealing process in air. The corresponding Gd2O3:Eu3+ nanotubes exhibit the strong red emission corresponding to the D-5(0)-F-7(2), transition of the Eu3+ ions under UV light or low-voltage electron beam excitation, which might find potential applications in the fields such as light-emitting phosphors, advanced flat panel displays, or biological labeling.
Resumo:
Rare earth ions (Eu3+ and Dy3+)-doped Gd-2(WO4)(3) phosphor films were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting powders and films. The results of XRD indicate that the films begin to crystallize at 600degreesC and the crystallinity increases with the elevation of annealing temperatures. The film is uniform and crack-free, WO(4)(2-)mainly consists of closely packed fine particles with an average grain size of 80 nm. Owing to an energy transfer from 4 groups, the rare earth ions show their characteristic emissions in crystalline Gd-2(WO4)(3) phosphor films, i.e., D-5(J) -F-7(J), (J = 0, 1, 2, 3; J' = 0 1, 2, 3, 4, not in all cases) transitions for Eu3+ and F-4(9/2)-H-6(J) (J = 13/2, 15/2) transitions for D Y3+, with the hypersensitive transitions D-5(0)-F-7(2) (Eu3+) and F-4(9/2) - H-6(13/2) (Dy3+) being the most prominent groups, respectively.
Resumo:
Monodisperse, core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL) and low-voltage cathodoluntinescence (CL). PL and CL study revealed that the core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles show strong red emission dominated by the D-5(0)-F-7(2) transition of Eu3+ at 615 nm with a lifetime of 0.89 ins. The PL and CL emission intensity can be tuned by the coating number of Gd-2(WO4)(3):Eu3+ phosphor layers on SiO2 particles, the size of the SiO2 core particles, and by accelerating voltage and the filament current, respectively.
Resumo:
Gd(OH)(3) nanobundles, which consisted of bundle-like nanorods, have been prepared through a simple and facile hydrothermal method. The crystal, purity, morphology and structural features of Gd(OH)(3) nanobundles are investigated by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy dispersive X-ray (EDX). A possible formation mechanism of Gd(OH)(3) nanobundles is briefly discussed.
Resumo:
Calcium lanthanide oxyborate doped with rare-earth ions LnCa(4)O(BO3)(3):RE3+ (LnCOB:RE, Ln = Y, La, Gd, RE = Eu, Tb, Dy, Cc) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos' and J phi rgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. J phi rgensen. Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band E-ct were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd ions transfer the energy from itself to Dy.
Resumo:
采用共沉淀法制备了稀土正磷酸盐荧光粉 ( La,Gd) PO4∶ RE3 +( RE=Eu,Tb) .红外光谱分析发现Gd PO4的红外光谱吸收峰与 La PO4一致 ,只是峰位向高波数方向移动 . ( La,Gd) PO4∶ RE3 +的真空紫外光谱特性研究表明 ,Gd3 +在能量传递过程中起中间体作用 .XPS研究揭示 ,La PO4的价带由 O2 -的 2 p能级构成 ,而 Gd PO4的价带则是由 O2 - 的 2 p能级和 Gd3 +的 4 f能级共同构成.
Resumo:
Vacuum ultraviolet excitation spectra of LnAl(3)B(4)O(12):Re (Ln = Y, Gd; Re = Eu, To), along with X-ray photoelectron spectra, were measured. The spectra are tentatively interpreted in terms of the optical properties of the rare earth ions and the band structure. It was found that there is an energy transfer from the hosts to the rare earth ions. It was also found that the top of the valence band in the Gd compound is mainly formed by the 2p levels of O2- and the 4f levels of Gd3+, and in the Y compound mainly by the 2p levels of O2-. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
K(4)Ln(2)(CO3)(3)F-4 (Ln=Pr, Nd, Sm, Eu, Gd) is a special type of frequency doubling compound, whose crystal structure exhibits a scarcity of fluorine ions. This leads to two different coordination polyhedrons in the general position of K(2) atoms: [K(2)O6F(1)(2)F(2)] and [K(21)O6F(1)(2)] in a 2/1 ratio. The chemical bonding structures of all constituent atoms of the compound K4Gd2(CO3)(3)F-4 (KGCOF) are comprehensively studied; moreover, the relationship between the chemical bonding structure and the nonlinear optical (NLO) properties is investigated from the chemical bond viewpoint. The theoretical prediction of the NLO tensor coefficient d(11) of KGCOF is in agreement with experimental observation. Theoretical analyses show that the nonlinearity of this crystal type mainly originates from K-O bonds. In addition, the correlation between the NLO tensor d(11) and the refractive index n(0) of KGCOF is discussed. (C) 2000 American Institute of Physics. [S0021-8979(00)07506-X].
Resumo:
From the chemical bond viewpoint, second-order nonlinear optical (NLO) tensor coefficients of the family of new oxoborates Ca4ReO(BO3)(3) (CReOB, Re = La, Nd, Sm, Gd, Er, and Y) have been theoretically predicted. The d(11) tensor coefficient of CReOB is predicted to be -11 d(36)(KDP), which is the largest d(ij) tensor that has been found in borate crystals. From the structural characteristic of CReOB, we find the isolated BO33- clusters play a dominant role in contributions to the total nonlinearity, and the largest d(11) tensor of CReOB-type crystals is also ascribed to these BO33- clusters. We also find the NLO property of this family does not change dramatically for different rare-earth elements. The details of the calculation of CGdOB only are presented.
Resumo:
A series of neutral eta6-C6Me6 complexes of lanthanide elements Ln(176-C6Me6)(AlCl4)3 . MeC6H5(Ln = Nd, Sm, Gd, Yb) has been prepared directly in good yields from the reaction of LnCl3, AlCl3 and C6Me6 in toluene. The complexes have been characte
Resumo:
本文用R_2O_3(R=Y,Gd,La),V_2O_6,Nb_2O_5和高温固相反应法合成了复合钒铌酸盐RVMb_2O_3,并以此为基质研究了Eu~(3+)和Dy~(3+)在其中的光谱性质.实验表明,Eu~(3+)在这三个化合物中均处于偏离反演对称中心的格位上,Eu~(3+)的荧光强度的红/横比(R/O)和Dy~(3+)的黄/蓝比(Y/B)均随R~(3+)的电荷半径比的减小而下降.同时还研究了Bi~(3+)和温度对Dy~(3+)的发射强度的影响.
Resumo:
本文使用角重迭模型(AOM)在考虑其全部四个参数e_σ、e_π、e_δ和e_φ的基础上,对Eu~(3+):Ln_2O_2S(Ln=Lu,Y,Gd,La)晶体的角量迭晶场参数进行了计算。结果表明,与σ、π反键有关的参数e_σ、e_x的数值相对较大,特别是e_σ值在这四个参数中为最大,而e_δ和e_α值则较小,在近似计算中可以忽略。这四种稀土硫氧化物的成键本领(或能力)按由大到小排列,其次序为Lu>Y>Gd>La。
Resumo:
本文使用角重迭模型(AOM),针对Eu~(3+):Ln_2O_2S(Ln=Lu,Y,Gd,La)晶体系列,在考虑硫和氧两种不同格位的情况下,对f电子的全部四个角重迭参数e_σ、e_π、e_δ和e_φ进行了计算,得到了一些基本规律,即中心离子与配位体之间的共价性大小次序为Lu~Y>Gd>La,并且Ln-O键的共价性要强于Ln-S键.
Resumo:
本文报导了Eu~(3+),Dy~(3+)在Ba_2RV_3O_(11)(R=Y,Gd,La)基质中的光谱性质、Bi~(3+)对Dy~(3+)发射强度的影响及温度对Dy~(3+)发射强度的猝灭情况.研究了被取代离子R~(3+)(R=Y,Gd,La)对基质电行迁移带、Eu~(3+)的红橙比、Dy~(3+)黄蓝比的影响,还给出了Dy~(3+)的浓度猝灭值.