53 resultados para Gaussian curvature
Resumo:
Bessel beam can overcome the limitation of the Rayleigh range of Gaussian beam with the same spot size propagation without any spreading due to diffraction, which is considered as an useful function in guiding particles in the next generation of optical tweezers. The mathematical description of the Bessel beam generated by an axicon is usually based on the Fresnel diffraction integral theory. In this paper, we deduce another type of analytic expression suitable for describing the beam profile generated from the axicon illuminated by the Gaussian beam based on the interferential theory. Compared with the Fresnel diffraction integral theory, this theory does not use much approximation in the process of mathematical analysis. According to the derived expression, the beam intensity profiles at any positions behind the axicon can be calculated not just restricted inside the cross region as the Fresnel diffraction integral theory gives. The experiments prove that the theoretical results fit the experimental results very well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We consider the Randall-Sundrum brane-world model with bulk-brane energy transfer where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. It is remarkable that these curvature terms will not change the dynamics of the brane universe at low energy. Parameterizing the energy transfer and taking the dark radiation term into account, we find that the phantom divide of the equation of state of effective dark energy could be crossed, without the need of any new dark energy components. Fitting the two most reliable and robust SNIa datasets, the 182 Gold dataset and the Supernova Legacy Survey (SNLS), our model indeed has a small tendency of phantom divide crossing for the Gold dataset, but not for the SNLS dataset. Furthermore, combining the recent detection of the SDSS baryon acoustic oscillations peak (BAO) with lower matter density parameter prior, we find that the SNLS dataset also mildly favors phantom divide crossing.
Resumo:
The Gaussian process latent variable model (GP-LVM) has been identified to be an effective probabilistic approach for dimensionality reduction because it can obtain a low-dimensional manifold of a data set in an unsupervised fashion. Consequently, the GP-LVM is insufficient for supervised learning tasks (e. g., classification and regression) because it ignores the class label information for dimensionality reduction. In this paper, a supervised GP-LVM is developed for supervised learning tasks, and the maximum a posteriori algorithm is introduced to estimate positions of all samples in the latent variable space. We present experimental evidences suggesting that the supervised GP-LVM is able to use the class label information effectively, and thus, it outperforms the GP-LVM and the discriminative extension of the GP-LVM consistently. The comparison with some supervised classification methods, such as Gaussian process classification and support vector machines, is also given to illustrate the advantage of the proposed method.
Resumo:
Gaussian beam is the asymptotic solution of wave equation concentred at the central ray. The Gaussian beam ray tracing method has many advantages over ray tracing method. Because of the prevalence of multipath and caustics in complex media, Kirchhoff migration usually can not get satisfactory images, but Gaussian beam migration can get better results.The Runge-Kutta method is used to carry out the raytracing, and the wavefront construction method is used to calculate the multipath wavefield. In this thesis, a new method to determine the starting point and initial direction of a new ray is proposed take advantage of the radius of curvature calculated by dynamic ray tracing method.The propagation characters of Gaussian beam in complex media are investigated. When Gaussian beam is used to calculate the Green function, the wave field near the source was decomposed in Gaussian beam in different direction, then the wave field at a point is the superposition of individual Gaussian beams.Migration aperture is the key factor for Kirchhoff migration. In this thesis, the criterion for the choice of optimum aperture is discussed taking advantage of stationary phase analysis. Two equivalent methods are proposed, but the second is more preferable.Gaussian beam migration based on dip scanning and its procedure are developed. Take advantage of the travel time, amplitude, and takeoff angle calculated by Gaussian beam method, the migration is accomplished.Using the proposed migration method, I carry out the numerical calculation of simple theoretical model, Marmousi model and field data, and compare the results with that of Kirchhoff migration. The comparison shows that the new Gaussian beam migration method can get a better result over Kirchhoff migration, with fewer migration noise and clearer image at complex structures.
Resumo:
Comprehensive two-dimensional gas chromatography (GC x GC) has attracted much attention for the analys is of complex samples. Even with a large peak capacity in GC x GC, peak overlapping is often met. In this paper, a new method was developed to resolve overlapped peaks based on the mass conservation and the exponentially modified Gaussian (EMG) model. Linear relationships between the calculated sigma, tau of primary peaks with the corresponding retention time (t(R)) were obtained, and the correlation coefficients were over 0.99. Based on such relationships, the elution profile of each compound in overlapped peaks could be simulated, even for the peak never separated on the second-dimension. The proposed method has proven to offer more accurate peak area than the general data processing method. (c) 2005 Elsevier B.V. All rights reserved.