294 resultados para Functionalized polypyrrole


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth metal bis(alkyl) complexes attached by fluorenyl modified N-heterocyclic carbene (NHC) (Flu-NHC)Ln(CH2SiMe3)(2) (Flu-NHC = (C13H8CH2CH2(NCHCCHN)C6H2Me3-2,4,6); Ln = Sc (2a); Y (2b); Ho (2c); Lu (2d)), ((tBu)Flu-NHC)Ln(CH2SiMe3)(2) ((tBu)Flu-NHC = 2,7-(Bu2C13H6CH2CH2)-Bu-t(NCHCCHN)C6H2Me3-2,4,6; Ln = Sc (1a); Lu (1d)) and attached by indenyl modified N-heterocyclic carbene (Ind-NHC)Ln(CH2SiMe3)(2) (Ind-NHC = C9H6CH2CH2(NCHCCHN)C6H2Me3-2,4,6; Ln = Sc (3a); Lu (3d)), under the activation of (AlBu3)-Bu-i and [Ph3C][B(C6F5)(4)], showed varied catalytic activities toward homo- and copolymerization of ethylene and norbornene. Among which the scandium complexes, in spite of ligand type, exhibited medium to high catalytic activity for ethylene polymerization (10(5) g mol(Sc)(-1) h(-1) atm(-1)), but all were almost inert to norbornene polymerization. Remarkably, higher activity was found for the copolymerization of ethylene and norbornene when using Sc based catalytic systems, which reached up to 5 x 10(6) g mol(Sc)(-1) h(-1) atm(-1) with 2a. The composition of the isolated copolymer was varying from random to alternating according to the feed ratio of the two monomers (r(E) = 4.1, r(NB) = 0.013).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered N-methylimidazolium functionalized mesoporous silica (SBA-15) anion exchangers were directly synthesized by co-condensation of tetraethoxysilane with 1-methyl-3(triethoxysilylpropyl)imidazolium chloride. The prepared samples with rod-like morphology showed high surface areas (> 400 m(2) g(-1)), well-ordered pores (> 58 angstrom), and excellent thermal stability up to 387 degrees C. The adsorption behaviors of Cr(VI) from aqueous solution on the anion exchangers were studied using the batch method. The anion exchangers had high adsorption capacity ranging from 50.8 to 90.5 mg g(-1), over a wider pH range (1-8) than amino functionalized mesoporous silica. The adsorption rate was fast, and the maximum adsorption was obtained at pH 4.6. The adsorption data for the anion exchangers were consistent with the Langmuir isotherm equation. Most active sites of the anion exchangers were easily accessible. The mixed solution of 0.1 mol L-1 NH3 center dot H2O and 0.5 mol L-1 NH4Cl was effective desorption solution, and 95% of Cr(VI) could be desorbed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethyleneimine-functionalized platinum nanoparticles (PtNPs) with excellent electrochemiluminescence (ECL) properties were synthesized and applied to the amplified analysis of biomolecules. These particles were prepared at room temperature, with hyperbranched polyethyleneimine (HBPEI) as the stabilizer. The UV/Vis absorption spectra and transmission electron microscopy images clearly confirmed the formation of monodisperse PtNPs. Such particles proved to possess high stability against salt-induced aggregation, enabling them to be employed even under high-salt conditions. Owing to the existence of many tertiary amine groups, these particles exhibited excellent ECL behavior in the presence of tris(2.2'-bipyridyl)ruthenium(II). An HBPEI-coated particle possessed an ECL activity that was at least 60 times higher than that of a tripropylamine molecule. Furthermore, these particles could be immobilized on the 3-aminopropyltriethoxysilane-treated quartz substrates to amplify the binding sites for carboxyl groups. Through this approach, PtNPs were applied to the amplified analysis of the hemin/G-quadruplex DNAzyme by using the luminol/H2O2 chemiluminescence method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enhanced electrochemiluminescence (ECL) efficiency is obtained from the ruthenium complex tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) by introduction of an ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF(4)). Upon addition of 1% (v/v) BMImBF(4) to 0.1 mm Ru(bpy)(3)(2+) solution, a maximum increase in ECL intensity is obtained both at an indium tin oxide (ITO) electrode (15-fold) and at a glassy carbon (GC) electrode (5- to 64old). Furthermore, upon addition of 1% (v/v) BMImBF4 to 5 pm Ru(bpy)(3)(2+)/100 mm co-reactant systems at a GC electrode, IL adsorption occurs at the electrode surface, which results in a change of the polarity of the electrode surface. Such functionalization greatly improves the functions of both Ru(bpy)(3)(2+) and ionic liquids, as is demonstrated in the sensitive and selective concentration enrichment of the Ru(bpy)(3)(2+) co-reactants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescence functionalization of ordered mesoporous MCM-41 silica was realized by depositing a YVO4:Eu3+ phosphor layer on its surface via the Pechini sol-gel process. This material, which combines the mesoporous structure of MCM-41 and the strong red luminescence property of YVO4: Eu3+, has been studied as a host carrier for drug delivery/release systems. The structure, morphology, texture and optical properties of the materials were well characterized by x-ray diffraction ( XRD), Fourier infrared spectroscopy ( FT-IR), transmission electron microscopy ( TEM), N-2 adsorption and photoluminescence ( PL) spectra. The results indicated that the specific surface area and pore volume of MCM-41, which were directly correlated to the drug-loading amount and ibuprofen ( IBU) release rate, decreased in sequence after deposition of YVO4:Eu3+ and loading of IBU as expected. The IBU-loaded YVO4:Eu3+@ MCM-41 system still showed red luminescence under UV irradiation ( 365 nm) and a controlled release property for IBU. In addition, the emission intensity of Eu3+ increases with an increase in the cumulative released amount of IBU, making the extent of drug release easily identified, tracked and monitored by the change of luminescence, which demonstrates its potential application in drug delivery/release systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (NIPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium-tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet-visiblenear-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV-vis-NIR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of indenyl-modified imidazolium bromide [C9H7CH2CH2(NCHCHN(C6H2Me3-2,4,6)CH)Br] ((IndH-NHC-H)Br) with rare earth metal tetra(alkyl) lithium (Ln(CH2SiMe3)(4)Li(THF)(4)) or with (trimethylsilylmethyl)lithium (LiCH2SiMe3) and rare earth metal tris(alkyl)s (Ln(CH2SiMe3)(3)(THF)(2)) sequentially afforded the first NHC-stabilized monomeric rare earth metal bis(alkyl) complexes (Ind-NHC)Ln(CH2SiMe3)(2) (1, Ln = Y; 2, Ln = Lu; 3, Ln = Sc) via double-deprotonation reactions. Complexes 1-3 are THF-free isostructural monomers. The monoanionic Ind-NHC species bond to the central metal ion in a eta(5):kappa(1) constrained geometry configuration (CGC) mode, which combine with the two cis-located alkyl moieties to form a tetrahedron ligand core, leading to the chirality of the complexes. Under the presence of activators AlEt3 and [Ph3C][B(C6F5)(4)], complex 2 showed catalytic activity toward the polymerization of isoprene to afford 3,4-regulated polyisoprene (91%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a green process, electrochemistry in aqueous solution without a supporting electrolyte has been described based on a simple polyelectrolyte-functionalized ionic liquid (PFIL)-modified electrode. The studied PFIL material combines features of ionic liquids and traditional polyelectrolytes. The ionic liquid part provides a high ionic conductivity and affinity to many different compounds. The polyelectrolyte part has a good stability in aqueous solution and a capability of being immobilized on different substrates. The electrochemical properties of such a PFIL-modified electrode assembly in a supporting electrolyte-free solution have been investigated by using an electrically neutral electroactive species, hydroquinone ( HQ) as the model compound. The partition coefficient and diffusion coefficient of HQ in the PFIL film were calculated to be 0.346 and 4.74 X 10(-6) cm(2) s(-1), respectively. Electrochemistry in PFIL is similar to electrochemistry in a solution of traditional supporting electrolytes, except that the electrochemical reaction takes place in a thin film on the surface of the electrode. PFILs are easily immobilized on solid substrates, are inexpensive and electrochemically stable. A PFIL-modified electrode assembly is successfully used in the flow analysis of HQ by amperometric detection in solution without a supporting electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a polyelectrolyte-functionalized ionic liquid (PFIL) was firstly incorporated into a sol-gel organic-inorganic hybrid material (PFIL/sol-gel). This new composite material was used to immobilize glucose oxidase on a glassy carbon electrode. An enhanced current response towards glucose was obtained, relative to a control case without PFIL. In addition, chronoamperometry showed that electroactive mediators diffused at a rate 10 times higher in the apparent diffusion coefficient in PFIL-containing matrices. These findings suggest a potential application in bioelectroanalytical chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phosphopolyoxomolybdate (P2Mo18) doped polypyrrole (PPy) modified electrode was prepared in aqueous solution by a one-step method. During the polymerization of PPy, P2Mo18 acted as both catalyst and dopant. The electrochemical behavior of the PPy/P2Mo18 modified electrode before and after the overoxidation of PPy was investigated. Both of these showed a catalytic effect toward bromate. The PPy/P2Mo18 composite film was characterized by chronoamperometry, cyclic voltammetry, the rotating disk electrode technique, X-ray photoelectron spectroscopy and Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in-site functionalization of 4-aminothiophenol (4-ATP) self-assembled monolayer on gold electrode at physiological pH yields a redox active monolayer of 4'-mercapto-N-phenylquinone diimine (MNPD). The functionalized electrode exhibits excellent electrocatalytic responses towards dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by about 0.22 V and 0.34 V, respectively, with greatly enhanced current responses. Due to its different catalytic activities toward DA and AA, the modified electrode resolves the overlapping voltammetric responses of DA and AA into two well-defined voltammetric peaks by differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentration in the ranges of 5.0 x 10-6 - 1.25 x 10-4 M and 8.0 x 10-6 - 1.3 x 10-4 M with correlation coefficient of 0.999 and 0.998, respectively. The detective limits (3sigma) for DA and AA were found to be 1.2 x 10-6 M and 2.4 x 10-6 M, respectively.