48 resultados para Free volume


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix-free implicit cell-centered FV method. The pressure Poisson equation is solved by the node-based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered-mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix-free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is a typical multiphase flow process for hydrate formation in seeping seafloor sediments. Free gas can not only be present but also take part in formation of hydrate. The volume fraction of free gas in local pore of hydrate stable zone (HSZ) influences the formation of hydrate in seeping seafloor area, and methane flux determines the abundance and resource of hydrate-bearing reservoirs. In this paper, a multiphase flow model including water (dissolved methane and salt)-free gas hydrate has been established to describe this kind of flow-transfer-reaction process where there exists a large scale of free gas migration and transform in seafloor pore. In the order of three different scenarios, the conversions among permeability, capillary pressure, phase saturations and salinity along with the formation of hydrate have been deducted. Furthermore, the influence of four sorts of free gas saturations and three classes of methane fluxes on hydrate formation and the resource has also been analyzed and compared. Based on the rules drawn from the simulation, and combined information gotten from drills in field, the methane hydrate(MH) formation in Shenhu area of South China Sea has been forecasted. It has been speculated that there may breed a moderate methane flux below this seafloor HSZ. If the flux is about 0.5 kg m-2 a-1, then it will go on to evolve about 2700 ka until the hydrate saturation in pore will arrive its peak (about 75%). Approximately 1.47 109 m3 MH has been reckoned in this marine basin finally, is about 13 times over preliminary estimate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitive method for the determination of 30 kinds of free fatty acids (FFAs, C-1-C-30) with 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4,5-f] 9,10-phenan- threne (TSPP) as labeling reagent and using high performance liquid chromatography with fluorescence detection and identification by online postcolumn mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion mode (HPLC/MS/APCI) has been developed. TSPP could easily and quickly label FFAs in the presence of K2CO3 catalyst at 90 degrees C for 30 min in N,N-dimethylformamide (DMF) solvent, and maximal labeling yields close to 100% were observed with a 5-fold excess of molar reagent. Derivatives were stable enough to be efficiently analyzed by high performance liquid chromatography. TSPP was introduced into fatty acid molecules and effectively augmented MS ionization of fatty acid derivatives and led to regular MS and MS/MS information. The collision induced cleavage of protonated molecular ions formed specific fragment ions at m/z [MH](+)(molecular ion), m/z [M'+CH2CH2](+)(M' was molecular mass of the corresponding FFA) and m/z 295.0 (the, mass of protonated molecular core structure of TSPP). Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C-8 column (4.6 x 150 mm, 5 mu m, Agilent) with a good baseline resolution in combination with a gradient elution. Linear ranges of 30 FFAs are 2.441 x 10(-3) to 20 mu mol/L, detection limits are 3.24 similar to 36.97 fmol (injection volume 10 mu L, at a signal-to-noise ratio of 3, S/N 3:1). The mean interday precision ranged from 93.4 to 106.2% with the largest mean coefficients of variation (R.S.D.) < 7,5%. The mean intraday precision for all standards was < 6.4% of the expected concentration. Excellent linear responses were observed with correlation coefficients of > 0.9991. Good compositional data could be obtained from the analysis of extracted fatty acids from as little as 200 mg of bryophyte plant samples.Therefore, the facile TSPP derivatization coupled with HPLC/MS/APCI analysis allowed the development of a highly sensitive method for the quantitation of trace levels of short and long chain fatty acids from biological and natural environmental samples.