105 resultados para Fluoride Inhibition
Resumo:
A flow injection system for the determination of organophosphate and carbamate pesticides is described. A sensitive fluorescence probe was synthesized and used as the pH indicator to detect the inhibition of the enzyme acetylcholinesterase (ACNE). The percentage inhibition of enzyme activity is correlated to the pesticide concentration. Several parameters influencing the performance of the system are discussed. The detection limits of 3.5, 50, 12 and 25 mug/l for carbofuran, carbaryl, paraoxon and dichlorvos, in pure water, respectively were achieved with an incubation time of 10 min. A complete cycle of analysis, including incubation time, took 14 min. The detection system has been applied to the determination of carbofuran in spiked vegetable juices (Chinese cabbage and cole), achieving recovery values between 93.2 and 107% for Chinese cabbage juice and 108 and 118% for cole juice at the different concentration levels assayed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We measured delta C-13 of CO2, CH4, and acetate-methyl in profundal sediment of eutrophic Lake Dagow by incubation experiments in the presence and absence of methanogenic inhibitors chloroform, bromoethane sulfonate (BES), and methyl fluoride, which have different specificities. Methyl fluoride predominantly inhibits acetoclastic methanogenesis and affects hydrogenotrophic methanogenesis relatively little. Optimization of methyl fluoride concentrations resulted in complete inhibition of acetoclastic methanogenesis. Methane was then exclusively produced by hydrogenotrophic methanogenesis and thus allowed determination of the fractionation factors specific for this methanogenic pathway. Acetate, which was then no longer consumed, accumulated and allowed determination of the isotopic signatures of the fermentatively produced acetate. BES and chloroform also inhibited CH4 production and resulted in accumulation of acetate. The fractionation factor for hydrogenotrophic methanogenesis exhibited variability, e. g., it changed with sediment depth. The delta C-13 of the methyl group of the accumulated acetate was similar to the delta C-13 of sedimentary organic carbon, while that of the carboxyl group was by about 12 parts per thousand higher. However, the delta C-13 of the acetate was by about 5 parts per thousand lower in samples with uninhibited compared with inhibited acetoclastic methanogenesis, indicating unusual isotopic fractionation. The isotope data were used for calculation of the relative contribution of hydrogenotrophic vs. acetoclastic methanogenesis to total CH4 production. Contribution of hydrogenotrophic methanogenesis increased with sediment depth from about 35% to 60%, indicating that organic matter was only partially oxidized in deeper sediment layers.
Resumo:
In this paper, we present a facile and general synthetic route to high-quality alkaline earth metal fluoride (AEF(2), AE = Ca, Sr, Ba) nanocrystals and CaF2:Tb3+ nanocrystals based on the thermal decomposition of corresponding trifluoroacetate precursors in hot oleylamine. X-ray diffraction, transmission electron microscopy, thermogravimetric and differential thermal analysis, Fourier transform infrared spectra, photoluminescence spectra, and kinetic decays were employed to characterize the samples. The use of single-source precursors plays an important role in the formation of high-quality AEF(2) nanocrystals, and the formation process is demonstrated in detail.
Resumo:
Compatibilized blends of poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) were developed using maleated PVDF (PVDF-g-MA). Excellent compatibilization between PVDF and TPU was demonstrated by theological, morphological, and mechanical measurements. The introduction of PVDF-g-MA into the PVDF/TPU blends caused an increase in viscosity and storage modulus. Much finer morphology was clearly observed by SEM. The tensile tests showed that the tensile strength and ultimate elongation achieved a significant improvement with addition of PVDF-g-MA.
Resumo:
The mechanism of inhibition of polymer film dewetting is investigated by adding a star comb-like polymer, four-arm P(S-ran-VB-g-PMMA), to PS film and PMMA film on different substrates. It is found that the mechanism of inhibition of polymer film dewetting is kinetic in nature, and is related to the miscibility between the additional compound and the polymer film. On addition to the miscible system [four-arm P(S-ran-VB-g-PMMA) and PMMA], the star comb-like polymers can increase the resistant force of dewetting with hole growth and inhibit the dewetting process of the thin polymer film by enrichment in the rim.
Resumo:
A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.
Resumo:
Lutetium fluorides with different compositions, crystal phases, and morphologies, such as beta-NaLuF4 hexagonal microprisms, microdisks, mirotubes, alpha-NaLuF4 submicrospheres, LuF3 octahedra, and NH4Lu2F7 icosahedra, prolate ellipsoids and spherical particles have been successfully synthesized via a facile hydrothermal route. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and photoluminescence spectra were used to characterize the samples. The intrinsic structural feature of lutetium fluorides, the solution pH values, F- sources, and organic additives (Cit(3-) and EDTA) account for the ultimate shape evolutions of the final products. The possible formation mechanisms for products with various architectures have been presented. Additionally, we investigated the upconversion luminescence properties of beta-NaLuF4: 20% Yb3+/2% Er3+ with different morphologies.
Resumo:
In this paper, a microarray-based surface-enhanced Raman spectroscopic (SERS) assay for detection of kinase functionality and inhibition has been reported. Biotinylated anti-phosphoserinen antibodies mark the phosphorylation and inhibition events and gold nanoparticles are attached to the antibodies by standard avidin-biotin chemistry, followed by silver deposition for SERS signal enhancement. The avidin conjugated fluorescein is used as SERS probe. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP) dependent protein kinase (PKA), its well known substrate, kemptide, and three inhibitors, H89, HA1077, and KN62 have been chosen here to establish the SERS assay. As expected, highly selective inhibition of PKA is demonstrated with the inhibitor H89 and the inhibition assay enable to detect kinase inhibition as well as derive IC50 (half maximal inhibitory concentration) plots.
Resumo:
An enzyme responsive nanoparticle system that uses a DNA-gold nanoparticle (AuNP) assembly as the substrate has been developed for the simple, sensitive, and universal monitoring of restriction endonucleases in real time. This new assay takes advantage of the palindromic recognition sequence of the restriction nucleases and the unique optical properties of AuNPs and is simpler than the procedure previously described by by Xu et al. (Angew. Chem. Int. Ed. Engl. 2007, 46, 3468-3470). Because it involves only one type of ssDNA modified AuNPs, this assay can be directed toward most of the endonucleases by simply changing the recognition sequence found within the linker DNA. In addition, the endonuclease activity could be quantitatively analyzed by the value of the reciprocal of hydrolysis half time (t(1/2)(-1). Furthermore, our new design could also be applied to the assay of methyltransferase activity since the methylation of DNA inhibits its cleavage by the corresponding restriction endonuclease, and thus, this new methodology can be easily adapted to high-throughput screening of methyltransferase inhibitors.
Resumo:
beta-NaYF4 microcrystals with a variety of morphologies, such as microrod, hexagonal microprism, and octadecahedron, have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra were used to characterize the samples. The intrinsic structural feature of beta-NaYF4 seeds and two important external factors, namely, the pH values in the initial reaction solution and fluoride sources, are responsible for shape determination of beta-NaYF4 microcrystals. It is found that the organic additive trisodium citrate (Cit(3-)) as a shape modifier has the dynamic effect by adjusting the growth rate of different facets under different experimental conditions, resulting in the formation of the anisotropic geometries of various beta-NaYF4 microcrystals. The possible formation mechanisms for products with various architectures have been presented. A systematic study on the photoluminescence of Tb3+-doped beta-NaYF4 samples with rod, prism, and octadecahedral shapes has shown that the optical properties of these phosphors are strongly dependent on their morphologies and sizes.
Resumo:
The hydrophobic carbon nanotubes-ionic liquid (CNTs-IL) get forms a stable modified film on hydrophobic graphite electrode surface. Laccase immobilized on the CNTs-IL gel film modified electrode shows good thermal stability and enhanced electrochemical catalytic ability. The optimal bioactivity occurs with increasing temperature and this optimum is 20 degrees C higher in comparison to free laccase. The improvement of laccase thermal stability may be due to the microenvironment of hydrophobic CNTs-IL gel on graphite electrode surface. On the other hand, the sensitive detection of oxygen has been achieved due to the feasibility of oxygen reduction by both of laccase and nanocomposite of CNTs-IL gel. Furthermore, the laccase hybrid nanocomposite also shows the fast electrochemical response and high sensitivity to the inhibitors of halide ions with the approximate IC50 of 0.01, 4.2 and 87.5 mM for the fluoride, chloride and bromide ions, respectively. It implies the feasibility of laccase modified electrode as an inhibition biosensor to detect the modulators of laccase.
Resumo:
We report on the development of a new class of kinase microarray for the detection of kinase inhibition based on marking peptide phosphorylation/biotinylation events by attachment of gold nanoparticles followed by silver deposition for signal enhancement. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate-dependent protein kinase (PKA), and its well-known substrate, kemptide, were used for the purpose of monitoring phosphorylation and inhibition. As expected, highly selective inhibition of PKA is demonstrated with the four inhibitors: H89, HA1077, mallotoxin, and KN62. Furthermore, an inhibition assay demonstrates the ability to detect kinase inhibition as well as derive IC50 (half-maximal inhibitory concentration) plots.
Resumo:
Different fluoride materials are used as gate dielectrics to fabricate copper phthalocyanine (CuPc) thin film. transistors (OTFTs). The fabricated devices exhibit good electrical characteristics and the mobility is found to be dependent on the gate voltage from 10(-3) to 10(-1) cm(2) V(-1)s(-1). The observed noticeable electron injection at the drain electrode is of great significance in achieving ambipolar OTFTs. The same method for formation of organic semiconductors and gate dielectric films greatly simplifies the fabrication process. This provides a convenient way to produce high-performance OTFTs on a large scale and should be useful for integration in organic displays.