59 resultados para Fluid Mechanics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The methane hydration process is investigated in a semi-continuous stirred tank reactor. Liquid temperatures and reaction rates without stirrer are compared with those occurring with stirrer, while at the same time better stirring conditions of the methane hydration process are given by the experiments. Some basic data of fluid mechanics, for example, stirring Reynolds number, Froucle number and stirrer power, are calculated during the methane hydration process, which can be applied to evaluate stirrer capacity and provide some basic data for a scaled up reactor. Based on experiment and calculations in this work, some conclusions are drawn. First, the stirrer has great influence on the methane hydration process. Batch stirring is helpful to improve the mass transfer and heat transfer performances of the methane hydration process. Second, induction time can be shortened effectively by use of the stirrer. Third, in this paper, the appropriate stirring velocity and stirring time were 320 rpm and 30 min, respectively, at 5.0 MPa, for which the storage capacity and reaction time were 159.1 V/V and 370 min, respectively. Under the condition of the on-flow state, the initial stirring Reynolds number of the fluid and the stirring power were 12,150 and 0.54 W, respectively. Fourth, some suggestions, for example, the use of another type of stirrer or some baffles, are proposed to accelerate the methane hydration process. Comparing with literature data, higher storage capacity and hydration rate are achieved in this work. Moreover, some fluid mechanics parameters are calculated, which can provide some references to engineering application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple, but important three-atom model was proposed at the solid/liquid interface, leading to a new criterion number, lambda, governing the boundary conditions (BCs) in nanoscale. The solid wall is considered as the face-centered-cubic (fcc) structure. The fluid is the liquid argon with the well-known LJ potential. Based on the concept, the two micro-systems have the same BCs if they have The same criterion number. The degree of the locking BCs is enhanced when lambda equals to 0.757. Such critical criterion number results in the substantial epitaxial ordering and one, two, or even three liquid layers are locked by the solid wall, depending on the coupling energy scale ratio of the solid and liquid atoms. With deviation from the critical criterion number, the flow approaches the slip BCs and there are little ordering structures within the liquid. Always at the same criterion number, the degree of the slip is decreased or the locking is enhanced with increasing the coupling energy scale ratio of the solid and liquid atoms. The above analysis is well confirmed by the molecular dynamics (MD) simulation. The slip length is well correlated in terms of the new criterion number. The future work is suggested to extend the present theory for other microstructures of the solid wall atoms and quasi-LJ potentials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

First, recent studies on the information preservation (IP) method, a particle approach for low-speed micro-scale gas flows, are reviewed. The IP method was validated for benchmark issues such as Couette, Poiseuille and Rayleigh flows, compared well with measured data for typical internal flows through micro-channels and external flows past micro flat plates, and combined with the Navier-Stokes equations to be a hybrid scheme for subsonic, rarefied gas flows. Second, the focus is moved to the microscopic characteristic of China stock market, particularly the price correlation between stock deals. A very interesting phenomenon was found that showed a reverse transition behaviour between two neighbouring price changes. This behaviour significantly differs from the transition rules for atomic and molecular energy levels, and it is very helpful to understand the essential difference between stock markets and nature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The motion of a single bubble rising freely in quiescent non-Newtonian viscous fluids was investigated experimentally and computationally. The non-Newtonian effects in the flow of viscous inelastic fluids are modeled by the Carreau theological model. An improved level set approach for computing the incompressible two-phase flow with deformable free interface is used. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The simulation results demonstrate that the algorithm is robust for shear-thinning liquids with large density (rho(1)/rho(g) up to 10(3)) and high viscosity (eta(1)/eta(g) up to 10(4)). The comparison of the experimental measurements of terminal bubble shape and velocity with the computational results is satisfactory. It is shown that the local change in viscosity around a bubble greatly depends on the bubble shape and the zero-shear viscosity of non-Newtonian shear-thinning liquids. The shear-rate distribution and velocity fields are used to elucidate the formation of a region of large viscosity at the rear of a bubble as a result of the rather stagnant flow behind the bubble. The numerical results provide the basis for further investigations, such as the numerical simulation of viscoelastic fluids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A linear spatio-temporal stability analysis is conducted for the ice growth under a falling water film along an inclined ice plane. The full system of linear stability equations is solved by using the Chebyshev collocation method. By plotting the boundary curve between the linear absolute and convective instabilities (AI/CI) of the ice mode in the parameter plane of the Reynolds number and incline angle, it is found that the linear absolute instability exists and occurs above a minimum Reynolds number and below a maximum inclined angle. Furthermore, by plotting the critical Reynolds number curves with respect to the inclined angle for the downstream and upstream branches, the convectively unstable region is determined and divided into three parts, one of which has both downstream and upstream convectively unstable wavepackets and the other two have only downstream or upstream convectively unstable wavepacket. Finally, the effect of the Stefan number and the thickness of the ice layer on the AI/CI boundary curve is investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The available experimental results have shown that in time-periodic motion the rheology of fluid mud displays complex viscoelastic behaviour. Based on the measured rheology of fluid mud from two field sites, we study the interaction of water waves and fluid mud by a two-layered model in which the water above is assumed to be inviscid and the mud below is viscoelastic. As the fluid-mud layer in shallow seas is usually much thinner than the water layer above, the sharp contrast of scales enables an approximate analytical theory for the interaction between fluid mud and small-amplitude waves with a narrow frequency band. It is shown that at the leading order and within a short distance of a few wavelengths, wave pressure from above forces mud motion below. Over a Much longer distance, waves are modified by the accumulative dissipation in mud. At the next order, infragravity waves owing to convective inertia (or radiation stresses) are affected indirectly by mud motion through the slow modulation of the short waves. Quantitative predictions are made for mud samples of several concentrations and from two different field sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Field measurements of salinity, wind and river discharge and numerical simulations of hydrodynamics from 1978 to 1984 are used to investigate the dynamics of the buoyant plume off the Pearl River Estuary (PRE), China during summer. The studies have shown that there are four major horizontal buoyant plume types in summer: Offshore Bulge Spreading (Type I), West Alongshore Spreading (Type II), East Offshore Spreading (Type III), and Symmetrical Alongshore Spreading (Type IV). River mouth conditions, winds and ambient coastal currents have inter-influences to the transport processes of the buoyant plume. It is found that all of the four types are surface-advected plumes by analysing the vertical characteristic of the plumes, and the monthly variations of the river discharge affect the plume size dominantly. The correlation coefficient between the PRE plume size and the river discharge reaches 0.85 during the high river discharge season. A wind strength index has been introduced to examine the wind effect. It is confirmed that winds play a significant role in forming the plume morphology. The alongshore wind stress and the coastal currents determine the alongshore plume spreading. The impact of the ambient currents such as Dongsha Current and South China Sea (SCS) Warm Current on the plume off the shelf has also assessed. The present study has demonstrated that both the river discharge and wind conditions affect the plume evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Halfgraben-like depressions have multiple layers of subtle traps, multiple coverings of oil-bearing series and multiple types of reservoirs. But these reservoirs have features of strong concealment and are difficult to explore. For this reason, many scholars contribute efforts to study the pool-forming mechanism for this kind of basins, and establish the basis for reservoir exploration and development. However, further study is needed. This paper takes HuiMin depression as an example to study the pool-forming model for the gentle slope belts of fault-depression lake basins. Applying multi-discipline theory, methods and technologies including sedimentary geology, structural geology, log geology, seismic geology, rock mechanics and fluid mechanics, and furthermore applying the dynamo-static data of oil reservoir and computer means in maximum limitation, this paper, qualitatively and quantitatively studies the depositional system, structural framework, structural evolution, structural lithofacies and tectonic stress field, as well as fluid potential field, sealing and opening properties of controlling-oil faults and reservoir prediction, finally presents a pool-forming model, and develops a series of methods and technologies suited to the reservoir prediction of the gentle slope belt. The results obtained in this paper richen the pool-forming theory of a complex oil-gas accumulative area in the gentle slope belt of a continental fault-depression basin. The research work begins with the study of geometric shape of fracture system, then the structural form, activity stages and time-space juxtaposition of faults with different level and different quality are investigated. On the basis of study of the burial history, subsidence history and structural evolution history, this paper synthesizes the studied results of deposition system, analyses the structural lithofacies of the gentle slope belt in the HuiMing Depression and its controlling roles to oil reservoir in the different structural lithofacies belts in time-space, and presents their evolution patterns. The study of structural stress field and fluid potential field indicates that the stress field has a great change from the Dong Ying stages to nowadays. One marked point among them is that the Dong Ying double peak- shaped nose structures usually were the favorable directional area for oil and gas migration, while the QuDi horst became favorable directional area since the GuanTao stage. Based on the active regular of fractures and the information of crude oil saturation pressure, this paper firstly demonstrates that the pool-forming stages of the LingNan field were prior to the stages of the QuDi field, whici provides new eyereach and thinking for hydrocarbon exploration in the gentle slope belt. The BeiQiao-RenFeng buried hill belt is a high value area with the maximum stress values from beginning to end, thus it is a favorable directional area for oil and gas migration. The opening and sealing properties of fractures are studied. The results obtained demonstrate their difference in the hydrocarbon pool formation. The seal abilities relate not only with the quality, direction and scale of normal stress, with the interface between the rocks of two sides of a fault and with the shale smear factor (SSF), but they relate also with the juxtaposition of fault motion stage and hydrocarbon migration. In the HuiMin gentle slope belt, the fault seal has difference both in different stages, and in different location and depth in the same stage. The seal extent also displays much difference. Therefore, the fault seal has time-space difference. On the basis of study of fault seal history, together with the obtained achievement of structural stress field and fluid potential field, it is discovered that for the pool-forming process of oil and gas in the studied area the fault seal of nowadays is better than that of the Ed and Ng stages, it plays an important role to determine the oil column height and hydrocarbon preservation. However, the fault seal of the Ed and Ng stages has an important influence for the distribution state of oil and gas. Because the influential parameters are complicated and undefined, we adopt SSF in the research work. It well reflects synthetic effect of each parameter which influences fault seal. On the basis of the above studies, three systems of hydrocarbon migration and accumulation, as well as a pool-forming model are established for the gentle slope belt of the HuiMin depression, which can be applied for the prediction of regular patterns of oil-gas migration. Under guidance of the pool-forming geological model for the HuiMin slope belt, and taking seismic facies technology, log constraint evolution technology, pattern recognition of multiple parameter reservoir and discrimination technology of oil-bearing ability, this paper develops a set of methods and technologies suited to oil reservoir prediction of the gentle slope belt. Good economic benefit has been obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrothermal wave was investigated numerically for large-Prandtl-number fluid (Pr = 105.6) in a shallow cavity with different heated sidewalls. The traveling wave appears and propagates in the direction opposite to the surface flow (upstream) in the case of zero gravity when the applied temperature difference grows and over the critical value. The phase relationships of the disturbed velocity, temperature and pressure demonstrate that the traveling wave is driven by the disturbed temperature, which is named hydrothermal wave. The hydrothermal wave is so weak that the oscillatory flow field and temperature distribution can hardly be observed in the liquid layer. The exciting mechanism of hydrothermal wave is analyzed and discussed in the present paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics. Most crystal growth processes involve fluid flows, such as flows in the melt, solution or vapor. Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices. The application of devices requires large diameter crystals with a high degree of crystallographic perfection, low defect density and uniform dopant distribution. In this article, the flow models developed in modeling of the crystal growth processes such as Czochralski, ammonothermal and physical vapor transport methods are reviewed. In the Czochralski growth modeling, the flow models for thermocapillary flow, turbulent flow and MHD flow have been developed. In the ammonothermal growth modeling, the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems. In the physical vapor transport growth modeling, the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth. In addition, perspectives for future studies on crystal growth modeling are proposed. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vibration analysis of an elastic container with partially filled fluid was investigated in this paper. The container is made of a thin cylinder and two circular plates at the ends. The axis of the cylinder is in the horizontal direction. It is difficult to solve this problem because the complex system is not axially symmetric. The equations of motion for this system were derived. An incompressible and ideal fluid model is used in the present work. Solutions of the equations were obtained by the generalized variational method. The solution was expressed in a series of normalized generalized Fourier's functions. This series converged rapidly, and so its approximate solution was obtained with high precision. The agreement of the calculated values with the experimental result is good. It should be mentioned that with our method, the computer time is less than that with the finite-element method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new numerical algorithms in SUPER/CESE and their applications in explosion mechanics are studied. The researched algorithms and models include an improved CE/SE (space-time Conservation Element and Solution Element) method, a local hybrid particle level set method, three chemical reaction models and a two-fluid model. Problems of shock wave reflection over wedges, explosive welding, cellular structure of gaseous detonations and two-phase detonations in the gas-droplet system are simulated by using the above-mentioned algorithms and models. The numerical results reveal that the adopted algorithms have many advantages such as high numerical accuracy, wide application field and good compatibility. The numerical algorithms presented in this paper may be applied to the numerical research of explosion mechanics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internal and surface waves generated by the deformations of the solid bed in a two layer fluid system of infinite lateral extent and uniform depth are investigated. An integral solution is developed for an arbitrary bed displacement on the basis of a linear approximation of the complete description of wave motion using a transform method (Laplace in time and Fourier in space) analogous to that used to study the generation of tsunamis by many researchers. The theoretical solutions are presented for three interesting specific deformations of the seafloor; the spatial variation of each seafloor displacement consists of a block section of the seafloor moving vertically either up or down while the time-displacement history of the block section is varied. The generation process and the profiles of the internal and surface waves for the case of the exponential bed movement are numerically illustrated, and the effects of the deformation parameters, densities and depths of the two layers on the solutions are discussed. As expected, the solutions derived from the present work include as special cases that obtained by Kervella et al. [Theor Comput Fluid Dyn 21:245-269, 2007] for tsunamis cased by an instantaneous seabed deformation and those presented by Hammack [J Fluid Mech 60:769-799, 1973] for the exponential and the half-sine bed displacements when the density of the upper fluid is taken as zero.