116 resultados para Field theory


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concise methods are proposed to study proton radioactivity. The spectroscopic factor is obtained from relativistic mean field (RMF) theory combined with the BCS method (RMF+BCS). The assault frequency is estimated by a quantum mechanical method considering the structure of the parent nucleus. The penetrability is calculated by the WKB approximation. No additional parameters are introduced. The extracted experimental spectroscopic factors are compared with those from the calculations by the RMF+BCS, and the agreement is good, implying that the present methods work quite well for proton radioactivity. Predictions are provided for some most possible proton emissions, which may be useful for future experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed in terms of the Green's function technique. In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function, which includes also the negative states in the Dirac sea in the nose aapproximation. The theoretical formalism of RCRPA and numerical details are presented. The single particle Green's function is calculated numerically by a proper product of regular and irregular solutions of the Dirac equation. The numerical details and the formalism of RCRPA in the momentum representation are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本论文主要包括两部分内容,一部分是运用相对论平均场理论对超重核基态性质的研究以及Pb同位素位移微观机制的研究,第二部分是在相对论平均场框架下对BCS型对关联的改进及其在有限核性质研究中的应用。基于核子与介子自由度的量子强子动力学(QHD), 从有效拉氏密度出发, 采取平均场近似, 已经成为当前最为成功的原子核理论之一,相对论平均理论。本文比较详细地介绍该理论模型, 并系统地探讨了新核素287115及其 衰变链上核的基态性质。结果发现所计算的结合能和四极形变符合了有限力程小液滴模型的结果,计算表明研究的 衰变链具有中等大小的长椭球形变;且计算的 衰变能 成功地与实验符合,说明相对平均场理论在原子核的超重区是有成功的。在此基础上进一步研究了新核素的单粒子能级,从而发现了超重核的一些新特点。通过分析Z=108到Z=114这四条同位素链的平均结合能,说明在这些同位素链中,对中子分离能的分析则可以看到N=162与N=184是壳效应的存在。研究了Pb同位素链的基态性质,从原子核的微观结构出发,比较详细地研究了Pb链同位素位移出现反常扭折这一重要性质的物理机制,由于满壳外额外中子会排布在距离满壳稍远一些的下一能级上,这自然会导致中子半径的增加.由于中子在核内的分布对质子分布的影响,将必然使原子核的电荷半径会在中子满壳后增加得更快。相对论平均场理论能够自然地给出原子核的自旋和轨道耦合,从而能给出合理的单粒子能级序列和间距,这为定量描述原子核的同位素位移提供了有力的理论基础。在论文的第二部分,通过引进密度相关的Delta力来改进传统的处理对关联的BCS方法,假定核子之间的作用为Delta力,计算得到状态相关的对能隙。相对于传统的常数对能隙是一个很重要的改进。接着我们用改进的理论研究了Sr同位素链的基态性质,得到了一些很有意义的结果。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembled behavior of rod-terminally tethered three-armed star-shaped coil block copolymer melts was studied by applying self-consistent-field lattice techniques in three-dimensional (3D) space. Similar to rod-coil diblock copolymers, five morphologies were observed, i.e., lamellar, perforated lamellar, gyroidlike, cylindrical and sphericallike structures, while the distribution of the morphologies in the phase diagram was dramatically changed with respect to that Of rod-coil diblock copolymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phase behaviors of comblike block copolymer A(m+1)B(m)/homopolymer A mixtures are studied by using the random phase approximation method and real-space self-consistent field theory. From the spinodals of macrophase separation and microphase separation, we can find that the number of graft and the length of the homopolymer A have great effects on the phase behavior of the blend. For a given composition of comblike block copolymer, increasing the number of graft does not change the macrophase separation spinodal curve but decreases the microphase separation region. The addition of a small quantity of long-chain homopolymer A increases the microphase separation of comblike block copolymer/homopolymer A mixture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of hydrodynamic interactions on the lamellar ordering process for two-dimensional quenched block copolymers in the presence of extended defects and the topological defect evolutions in lamellar ordering process are numerically investigated by means of a model based on lattice Boltzmann method and self-consistent field theory. By observing the evolution of the average size of domains, it is found that the domain growth is faster with stronger hydrodynamic effects. The morphological patterns formed also appear different. To study the defect evolution, a defect density is defined and is used to explore the defect evolutions in lamellar ordering process. Our simulation results show that the hydrodynamics effects can reduce the density of defects. With our model, the relations between the Flory-Huggins interaction parameter chi, the length of the polymer chains N, and the defect evolutions are studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to understand the coarsening of microdomains in symmetric diblock copolymers at the late stage, a model for block copolymers is proposed. By incorporating the self consistent field theory with the free energy approach Lattice Boltzmann model, hydrodynamic interactions can be considered. Compared with models based on Ginzburg-Landau free energy, this model does not employ phenomenological free energies to describe systems. The model is verified by comparing the simulation results obtained using this method with those of a dynamical version of the self consistent mean field theory. After that,the growth exponents of the characteristic domain size for symmetric block copolymers at late stage are studied. It is found that the viscosity of the system affects the growth exponents greatly, although the growth exponents are all less than 1/3 Furthermore, the relations between the growth exponent, the interaction parameter and the chain length are studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the interplay between microphase assembly and macrophase separation in A/B/AB ternary polymer blends by examining the free energy of localized fluctuation structures (micelles or droplets), with emphasis on the thermodynamic relationship between swollen micelles (microemulsion) and the macrophase-separated state, using self-consistent field theory and an extended capillary model. Upon introducing homopolymer B into a micelle-forming binary polymer blend A/AB, micelles can be swollen by B. A small amount of component B (below the A-rich binodal of macrophase coexistence) will not affect the stability of the swollen micelles. A large excess of homopolymer, B, will induce a microemulsion failure and lead to a macrophase separation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel bump-surface multicompartment micelles formed by a linear amphiphilic ABC triblock copolymer via self-assembly in selective solvent were successfully observed both in simulation and experiment. The results revealed that the block A forms the most inner core, and the blocks B and C form the inner and outer layers, respectively, and the bumps were formed by block A and more likely to be born on curving surfaces. Moreover, the micelle shape could be controlled by changing the solvent selectivity of the blocks A and B. Spherical, cylindrical, and discoidal micelles with bumpy surfaces were obtained both in experiment and simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Real-space self-consistent field theory (SCFT) is employed to study the effect of solvent molecular size on the self-assembly of amphiphilic diblock copolymer in selective solvent. The phase diagrams in wide ranges of interaction parameters and solvent molecular size were obtained in present study. The results indicate that the solvent molecular size is a key factor that determines the self-assembly of amphiphilic diblock copolymer. The self-assembled morphology changes from circle-like micelle to line-like micelle, then to loop-like micelle by decreasing the solvent molecular size in a wide range of solvent selectivity. We analyze and discuss this change in terms of the solvent solubility and the entropy contribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The authors developed a time dependent method to study the single molecule dynamics of a simple gene regulatory network: a repressilator with three genes mutually repressing each other. They quantitatively characterize the time evolution dynamics of the repressilator. Furthermore, they study purely dynamical issues such as statistical fluctuations and noise evolution. They illustrated some important features of the biological network such as monostability, spirals, and limit cycle oscillation. Explicit time dependent Fano factors which describe noise evolution and show statistical fluctuations out of equilibrium can be significant and far from the Poisson distribution. They explore the phase space and the interrelationships among fluctuations, order, amplitude, and period of oscillations of the repressilators. The authors found that repressilators follow ordered limit cycle orbits and are more likely to appear in the lower fluctuating regions. The amplitude of the repressilators increases as the suppressing of the genes decreases and production of proteins increases. The oscillation period of the repressilators decreases as the suppressing of the genes decreases and production of proteins increases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Finding a multidimensional potential landscape is the key for addressing important global issues, such as the robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the gene switch in the protein concentration space in the presence of the intrinsic statistical fluctuations due to the small number of proteins in the cell. We explored the global phase space for the system. We found that the protein synthesis rate and the unbinding rate of proteins to the gene were small relative to the protein degradation rate; the gene switch is monostable with only one stable basin of attraction. When both the protein synthesis rate and the unbinding rate of proteins to the gene are large compared with the protein degradation rate, two global basins of attraction emerge for a toggle switch. These basins correspond to the biologically stable functional states. The potential energy barrier between the two basins determines the time scale of conversion from one to the other. We found as the protein synthesis rate and protein unbinding rate to the gene relative to the protein degradation rate became larger, the potential energy barrier became larger. This also corresponded to systems with less noise or the fluctuations on the protein numbers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied a simple gene regulatory network, the toggle switch. Specifically, we examined the means and statistical fluctuations in numbers of proteins. We found that when omega, the ratio of rates of protein-gene unbinding to protein degradation, was between similar to 10(-3) and similar to 10, the fluctuations were much larger than those we would have expected from Poisson statistics. In addition, we examined characteristic time values for system relaxation and found both that they increased with omega and that they have significant phase transition effects, with a secondary time scale appearing near the boundary between bistable and other phases. Last, we discuss the bistability of the toggle switch.