121 resultados para FUEL RODS
Resumo:
A 40 wt% Pt/C cathode electrocatalyst with controlled Pt particle size of similar to 2.9 nm showing better performance than commercial catalyst for direct methanol fuel cell was prepared by a polyol process with water but without using stabilizing agent.
Resumo:
The lifetime behavior of a H-2/O-2 proton exchange membrane (PEM) fuel cell with polystyrene sulfonic acid (PSSA) membrane have been investigated in order to give an insight into the degradation mechanism of the PSSA membrane. The distribution of sulfur concentration in the cross section of the PSSA membrane was measured by energy dispersive analysis of X-ray, and the chemical composition of the PSSA membrane was characterized by infrared spectroscopy before and after the lifetime experiment. The degradation mechanism of the PSSA membrane is postulated as: the oxygen reduction at the cathode proceeds through some peroxide intermediates during the fuel cell operation, and these intermediates have strong oxidative ability and may chemically attack the tertiary hydrogen at the a carbon of the PSSA; the degradation of the PSSA membrane mainly takes place at the cathode side of the cell, and the loss of the aromatic rings and the SO3- groups simultaneously occurs from the PSSA membrane. A new kind of the PSSA-Nafion composite membrane, where the Nafion membrane is bonded with the PSSA membrane and located at the cathode of the cell, was designed to prevent oxidation degradation of the PSSA membrane in fuel cells. The performances of fuel cells with PSSA-Nafion101 and PSSA-recast Nafion composite membranes are demonstrated to be stable after 835 h and 240 h, respectively.
Resumo:
To improve the cycle life of unitized regenerative fuel cells (URFCs), an electrode with a composite structure has been developed. The cycle life and polarization curves for both fuel cell and electrolysis modes of URFC operation were investigated. The cycle life of URFCs was improved considerably and the performance was fairly constant during 25 cycles, which illustrates that the composite electrode is effective in sustaining the cyclic performance of URFCs. It shows the URFCs with such an electrode structure are promising for practical applications. (C) 2004 The Electrochemical Society.
Resumo:
The fabrication and performance evaluation of a miniature twin-fuel-cell on silicon wafers are presented in this paper. The miniature twin-fuel-cell was fabricated in series using two membrane-electrode-assemblies sandwiched between two silicon substrates in which electric current, reactant, and product flow. The novel structure of the miniature twin-fuel-cell is that the electricity interconnect from the cathode of one cell to the anode of another cell is made on the same plane. The interconnect was fabricated by sputtering a layer of copper over a layer of gold on the top of the silicon wafer. Silicon dioxide was deposited on the silicon wafer adjacent to the copper layer to prevent short-circuiting between the twin cells. The feed holes and channels in the silicon wafers were prepared by anisotropic silicon etching from the back and front of the wafer with silicon dioxide acting as intrinsic etch-stop layer. Operating on dry H-2/O-2 at 25 degreesC and atmospheric pressure, the measured peak power density was 190.4 mW/cm(2) at 270 mA/cm(2) for the miniature twin-fuel-cell using a Nafion 112 membrane. Based on the polarization curves of the twin-fuel-cell and the two single cells, the interconnect resistance between the twin cells was calculated to be in the range from 0.0113 Omega (at 10 mA/cm(2)) to 0.0150 Omega (at 300 mA/cm(2)), which is relatively low. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Porous polytetrafluoroethylene (PTFE) membranes were used as support material for Nafion((R))/PTFE composite membranes. The composite membranes were synthesized by impregnating porous PTFE membranes with a self-made Nafion solution. The resulting composite membranes were mechanically durable and quite thin relative to traditional perfluorosulfonated ionomer membranes (PFSI); we expect the composite membranes to be of low resistance and cost. In this study, we used three kinds of porous PTFE films to prepare Nafion/PTFE composite membranes of different thickness. Scanning electron micrographs and oxygen permeabilities showed that Nafion resin is distributed uniformly in the composite membrane and completely plug the micropores, there is a continuous thin Nation film present on the PTFE surface. The variation in water content of the composite and Nafion 115 membranes with temperature was determined. At the same temperature, water content of the composite membranes was smaller than that of the Nafion 115. In both dry and wet conditions, maximum strength and break strength of C-325(#) and C-345(#) were larger than those of Nafion 112 due to the reinforcing effect of the porous PTFE films. And the PEMFC performances and the lifetime of the composite membranes were also tested on the self-made apparatus. Results showed that the bigger the porosity of the substrate PTFE films, the better the fuel cell performance; the fuel cell performances of the thin composite membranes were superior to that of Nation 115 membrane; and after 180 h stability test at 500 mA/cm(2), the cell voltage showed no obvious drop. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Multi-walled carbon nanotubes supported Pt-Fe cathodic catalyst shows higher specific activity towards oxygen reduction reaction as compared to Pt/MWNTs when employed as cathodic catalyst in direct methanol fuel cell.
Resumo:
The surface properties, porosities, and adsorption capacities of activated carbons (AC) are modified by the oxidation treatment using concentrated H2SO4 at temperatures 150-270 degreesC. The modified AC was characterized by N-2 adsorption, base titration, FTIR, and the adsorption of iodine, chlorophenol, methylene blue, and dibenzothiophene. The treatment of AC with concentrated H2SO4 at 250 degreesC greatly increases the mesoporous volume from 0.243 mL/g to 0.452 mL/g, specific surface areas from 393 m(2)/g to 745 m(2)/g, and acidic surface oxygen complexes from 0.071 meq/g to 1.986 meq/g as compared with the unmodified AC. The base titration results indicate that the amount of acidic surface oxygen groups on the modified AC increases with increasing the treatment temperatures and carboxyls and phenols are the most abundant carbon-oxygen functional groups. The carboxyl groups, COO- species, and hydroxyl groups are detected mainly for the sample treated at 250 degreesC. The mesoporous properties of the AC modified by concentrated H2SO4 were further tested by the adsorption of methylene blue and dibenzothiophene. The AC modified by concentrated H2SO4 at 250 degreesC has much higher adsorption capacities for large molecules (e.g., methylene blue and dibenzothiophene) than the unmodified AC but less adsorption capacities for small molecules (e.g., iodine). The adsorption results from aqueous solutions have been interpreted using Freundlich adsorption models.
Resumo:
Multiwalled carbon nanotube-supported Pt (Pt/MWNT) nanocomposites were prepared by both the aqueous solution reduction of a Pt salt (HCHO reduction) and the reduction of a Pt ion salt in ethylene glycol solution. For comparison, a Pt/XC-72 nanocomposite was also prepared by the EG method. The Pt/MWNT catalyst prepared by the EG method has a high and homogeneous dispersion of spherical Pt metal particles with a narrow particle-size distribution. TEM images show that the Pt particle size is in the range of 2-5 nm with a peak at 2.6 nm, which is consistent with 2.5 nm obtained from the XRD broadening calculation. Surface chemical modifications of MWNTs and water content in EG solvent are found to be the key factors in depositing Pt particles on MWNTs. In the case of the direct methanol fuel cell (DMFC) test, the Pt/MWNT catalyst prepared by EG reduction is slightly superior to the catalyst prepared by aqueous reduction and displays significantly higher performance than the Pt/XC-72 catalyst. These differences in catalytic performance between the MWNT-supported or the carbon black XC-72-supported catalysts are attributed to a greater dispersion of the supported Pt particles when the EG method is used, in contrast to aqueous HCHO reduction and to possible unique structural and higher electrical properties when contrasting MWNTs to carbon black XC-72 as a support.
Resumo:
This work reports on the design and performance evaluation of a miniature direct methanol fuel cell(DMFC)integrated with an electro_osmotic(EO)pump for methanol delivery.Electro-osmotic pumps require minimal parasitic power while boasting no moving parts and simple fuel cell integration.Here ,aneletro-osmotic pump is realized from a commercially available porous glass frit.We characterize a custom-fabricated DMFC with a free convection cathode and coupled to an extennal electro-osmotic pump operated at applied potentials of 4.0,7.0,and 10V.Maximum gross power density of our free convection DMFC(operated at 50°)is 55 mW/cm2 using 4.0 mol/L concentration methanol solution supplied by the EO pump.Experimental results show that electro-osmotic pumps can deliver 2.0,4.0 and 8.0mol/L methanol/water mixtures to DMFCs while utilizing ~5.0% of the fuel cell power.Furthermore ,we discuss pertinent design considerations when using electro-osmotic pumps with DMFCs and areas of further study.