236 resultados para Er3


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of zinc tellurite glasses of 75TeO(2)-20ZnO-(5-x)La2O3-xEr(2)O(3) (x=0.02, 0.05, and 0.1 mol%) with the different hydroxl groups were prepared by the conventional melt-quenching method. Infrared spectra were measured in order to estimate the exact content of OH- groups in samples. The observed increase of the fluorescence lifetime with the oxygen bubbling time has been related to the reduction in the OH- content concentration as evidenced by IR transmission spectra. Various nonradiative decay rates from I-4(13/2) of Er3+ with. the change of OH content were determined from the fluorescence lifetime and radiative decay rates were calculated on the basis of Judd-Ofelt theory. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(100 - x)TeO2 - xNb(2)O(5) (x=5-20) mobic tellurite glasses doped with 0.5 mol.% Er2O3 were synthesized, and their thermal, mechanical, and spectroscopic properties were measured and compared to the properties of the typical 75TeO(2)-20ZnO-5Na(2)O (TZN) tellurite glass. The refractive index (n(d)), density (p), and glass transition temperature (T-g) of bulk glasses increase with the Nb2O5 content. The Vickers microhardness (H-v) of bulk glass in niobic tellurite glasses also increases with the Nb2O5 content. The values (2.5-3.2 GPa) of H, in the niobic tellurite glasses are 47-88% larger than that (1.7 GPa) in TZN glass. The effect of Nb2O5 content on absorption spectra, the Judd-Ofelt parameters Omega(t) (t = 2, 4, 6), fluorescence spectra and the lifetimes of Er3+ :I-13/2 level were also investigated, and the stimulated emission crosssection was calculated from McCumber theory. With increasing Nb2O5 content in the glass composition, the Omega(t) (t = 2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) Of I-13/2 of Er3+ increase, while the I-4(13/2) lifetimes of Er3+ decreases. Compared with TZN glass, the gain bandwidth properties of Er3+-doped TeO2-Nb2O5 glass is much larger than in tellurite glass based TeO2-ZnO-Na2O system, bismush-based glass, germanate, and silicate glasses, which indicates that TeO2-Nb2O5 glasses are better choice as a practical available host material for broadband Er3+-doped amplifier. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared-to-visible upconversion fluorescence property of Er3+/Yb3+ codoped novel bismuth-germanium glass under 975 nm LD excitation has been studied. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. The structure of the bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel bismuth-germanium glass with low maximum phonon energy (similar to 750 cm(-1)) can be used as potential host material for upconversion lasers. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+/Yb3+-codoped potassium-barium-strontium-lead-bismuth glasses for developing potential upconversion lasers have been fabricated and characterized. Based on the results of energy transfer efficiency, the optimal Yb3+/Er3+ concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 run, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency upconversion fluorescence property of Er3+-doped oxychloride germanate glass is investigated. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm laser diode (LD) excitation. The Raman spectrum investigation indicates that oxychloride germanate glass has the maximum phonon energy at similar to 805 cm(-1). The thermal stability of this oxychloride germanate glass is evaluated by differential scanning calorimetry, and thermal stability factor Delta T (Delta T = T-x-T-g) is 187 degrees C. Intense upconversion luminescence and good thermal stability indicate that Er3+-doped oxychloride germanate glass is a promising upconversion laser material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the structural and infrared-to-visible upconversion fluorescence properties of Er3(+)/Yb3+-codoped lead-free germanium-bismuth glass. The structure of lead-free germanium-bismuth-lanthanum glass is investigated by peak-deconvolution of Raman spectroscopy. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> (IT15/2)-I-4 -> S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, are observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and infrared-to-visible upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride lead-germanium-bismuth glass have been studied. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence owing to lower phonon energy. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2)-->I-4(15/2,) I-4(3/2)-->I-4(15/2), and F-4(9/2)-->I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+/Yb3+-codoped novel oxyfluoride bismuth-germanium glass was prepared and its up-conversion fluorescence property under 975 nm excitation has been studied. Intense green and weak red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The possible up-conversion mechanism was also evaluated. The optimal Yb3+-Er3+ concentration ratio is found based on the direct lifetime measurements of excited levels for Er3+ ion. The structure of this novel oxyfluoride bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel oxyfluoride bismuth-germanium glass with relatively lower maximum phonon energy (similar to 731 cm(-1)) can be used as potential host material for up-conversion lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upconversion properties of Er3+/Yb3+ codoped tellurite glasses and glass fibers with D-shape cladding under 980 mu excitation were investigated. Intense emission bands centered at 531, 546 and 658 nm corresponding to the transitions Er3+: H-2(11/2) -> I-4(15/2) , S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. Compared with that in Er3+/Yb3+ codoped tellurite bulk glass, the upconversion luminescence becomes more efficient in the fiber geometry. The dependence of upconversion intensities on fiber geometry and possible upconversion mechanism are discussed and evaluated. The presented Er3+/Yb3+ codoped tellurite fibers with intense upconversion luminescence can be used as potential host materials for upconversion fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tellurite glass is proposed as a host for broadband erbium-doped fiber amplifiers because of their excellent optical and chemical properties. A new single mode Er3+/Yb3+ codoped tellurite fiber with D-shape cladding geometry is fabricated in this work. When pumped at 980 nm, a broad erbium amplified spontaneous emission (ASE) nearly 100 nm in the wavelength range of 1450-1650 ran around 1.53 mu m is observed. It was found that the emission spectrum from erbium in tellurite glass fibers is almost twice as broad as the corresponding spectrum in tellurite bulk glass. The changes in ASE with regard to fiber lengths and pumping power were measured and discussed. The output of about 2.3 mW from Er3+/Yb3+ codoped tellurite fiber ASE source is obtained under the pump power of 700 mW. The broad 1.53 mu m emission of Er3+ in Er3+/Yb3+ codoped tellurite glass fiber can be used as host material for potential broadband optical amplifier and tunable fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+-doped TeO2-WO3 glass was fabricated and characterized by absorption spectrum, fluorescence spectrum, Raman spectrum and stability. The Judd-Ofelt parameter ohm(t)(t = 2, 4, 6) were calculated from the absorption spectrum by the Judd-Ofelt theory. The fluorescence spectrum indicates that the fluorescence width at half-maximum (FWHM) is 66nm. The stimulated emission cross-section of Er3+ in TeO2-WO3 glass at 1532 nm was calculated to be 0.80 x 10(-20) cm(2) by McCumber theory. The phonon energy of TeO2-WO3 glass is found to be 931 cm(-1). The difference between crystallization onset temperature and glass transition temperature Delta T is 112 degrees C. These results show that Er3+-doped TeO2-WO3 glass has higher stability and good spectral properties, which were useful for broadband amplifier. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten-tellurite glass with molar composition of 60TeO(2)-30WO(3)-10Na(2)O has been investigated for developing planar broadband waveguide amplifier application. Spectroscopic properties and thermal stability of Er3+-doped tungsten-tellurite glass have been discussed. The results show that the introduction Of WO3 increases significantly the glass transition temperature and the maximum phonon energy. Er3+-doped tungsten-tellurite glass exhibits high glass transition temperature (377 degrees C), large emission cross-section (0.91 x 10(-20) cm(2)) at 1532 nm and broad full width at half maximum (FWHM), which make it preferable for broadband Er3+-doped waveguide amplifier application. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel diffractive-pumping scheme is proposed to improve the evanescent amplification using blazed fiber grating for the first time. We also investigate the cw-pumped-evanescent amplification at 1.55 mu m wavelength with the relative optical gain pumped at 1480 nm of around 2 dB based on side-polished fiber with the effective interaction length as long as 16 mm and with a heavily Er3+-doped (N-Er(3+) > 1.19 x 10(21) ions/cm(3)), low refractive index (n(1550) < 1.47) glass overlay, which has no concentration quenching (tau(f) = 9.0 ms).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive study on the thermal stability and spectroscopic properties of Er3+/Yb3+-codoped Al(PO3)(3)-based fluorophosphate glasses is reported of the 1.5&mu; m fibre amplifiers in this paper. From optical absorption spectra, the Judd-Ofelt parameters of Er3+ in the glasses and several important optical properties, such as the radiative transition probability, the branching ratio and the spontaneous emission probability, have been calculated by using Judd-Ofelt theory. The fluorophosphate glass exhibits broadband near-infrared emission at 1.53&mu; m with a full width at half-maximum over 63nm, and a large calculated stimulated-emission cross-section of 6.85 x 10(-21)cm(2).