102 resultados para Energy dispersive x-ray


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly crystalline CaMoO4:Tb3+ phosphor layers were grown on monodisperse SiO2 particles through a simple sol-gel method, resulting in formation of core-shell structured SiO2@CaMoO4:Tb3+ submicrospheres. The resulting SiO2@CaMoO4: Tb3+ core-shell particles were fully characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and kinetic decays. The XRD results demonstrate that the CaMoO4:Tb3+ layers begin to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. SEM and TEM analysis indicates that the obtained submicrospheres have a uniform size distribution and obvious core-shell structure. SiO2@CaMoO4:Tb3+ submicrospheres show strong green emission under short ultraviolet (260 nm) and low-voltage electron beam (1-3 kV) excitation, and the emission spectra are dominated by a D-5(4) -F-7(5) transition of Tb3+(544 nm, green) from the CaMoO4:Tb3+ shells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (similar to 25 nm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis of submicrometre scale single-crystalline gold plates of nanometre thickness in the presence of nucleobase guanine through chemical reduction of HAuCl4 was investigated. The elemental composition of the as-prepared gold nanoplates was estimated using energy-dispersive x-ray spectroscopy. The as-prepared gold plates were composed of essentially (111) lattice planes, as revealed by both x-ray diffraction (XRD) and transmission electron microscopy (TEM) results. It was found that the molar ratio of HAuCl4 to guanine played a very important role in the formation of gold nanoplates. Gold nanoplates could be produced at a molar ratio of [HAuCl4]/[guanine] = 50: 1 while only smaller gold spherical nanoparticles were obtained at molar ratios of [HAuCl4]/[guanine] <= 20:1. A possible growth mechanism of the as-prepared gold nanoplates is proposed and discussed. The results and conclusion presented in this work may be valuable for our further understanding of the roles of precursor ligands in the control of nanoparticles aggregation states and the preparation of shape-controlled nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of cerium on the microstructure and electrochemical performance of the Ti0.25V0.35-xCexCr0.1Ni0.3 (x = 0, 0.005) electrode alloy was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectrometry (FESEM-EDS), and electrochemical impedance spectroscopy (EIS) measurements. On the basis of XRD and FESEM-EDS analysis, the alloy was mainly composed of V-based solid solution with body-centered-cubic structure and TiNi-based secondary phase. Ce did not exist in two phases, instead, it existed as Ce-rich small white particles, with irregular edges, distributed near the grain boundaries of the V-based solid solution phase. Discharge capacity, cycle stability, and high-rate discharge ability of the alloy electrode were effectively improved with the addition of Ce at 293 K. It was very surprising that the charge retention was abnormal with larger discharge capacity after standing at the open circuit for 24 h. EIS indicated that addition of Ce improved the dynamic performance, which caused the charge transfer resistance (R-T) to decrease and exchange current density (I-0) to increase markedly. The exchange current density of the electrochemical reaction on the alloy surface with Ce addition was about 2.07 and 3.10 times larger than that of the alloy without Ce at 303 and 343 K, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La0.5Ba0.5MnO3 products with novel flowerlike, microcube, and nanocube structures were successfully synthesized by a simple hydrothermal route by controlling the alkalinity of the reaction solutions. The synthesized products were systematically studied by X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that the formation of the flowerlike structures with a layer assembly experienced a nucleation-aggregation-crystallization growth process, while the cubic structures experienced a nucleation-crystallization growth process due to the effect of different alkalinity in the reaction solutions. The higher alkalinity also led to a decrease in the size in the cubic structures. Suitable temperature and pressure were demonstrated to be crucial to the formation of the flowerlike structures by carrying out further control experiments. The measurement of the magnetic properties of three samples obtained at different alkaline conditions indicated that the size of the La0.5Ba0.5MnO3 products had an obvious influence on their properties; however, the dependence of the properties upon the morphology of the La0.5Ba0.5MnO3 products was minor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrolyte, NaBF4, can be enriched into the matrix of poly(3,4-ethylenedioxythiophene) (PEDOT) film during the p-doping potential cycling between 0.6 and -0.9 V. It has been demonstrated that this enrichment is originated from the mixed ion transfer between doping and dedoping, i.e. BF4- anion migrate into the PEDOT film during the oxidation process, the Ne cation insert into the film during the reduction process, and then, the electrolyte is accumulated into the film matrix after the multiple CV cycling. The quantitative analysis of energy-dispersive X-ray spectroscopy (EDX) confirmed the enrichment of NaBF4 in the PEDOT film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and luminescence properties of Zn2SiO4:Mn phosphor layers on spherical silica spheres,i.e.,a kind of core-shell complex phosphor,Zn2SiO4:Mn@SiO2 were described.Firstly,monodisperse silica spheres were obtained via the Stober method by the hydrolysis of tetraethoxysilane(TEOS)Si(OC2H5)4 under base condition (using NH4OH as the catalyst).Secondly,the silica spheres were coated with a Zn2SiO4:Mn phosphor layer by a Pechini sol-gel process.X-ray diffraction(XRD),scanning electron microscope(SEM),energy-dispersive X-ray spectrum(EDS) and photoluminescence(PL) were employed to characterize the resulting complex phosphor.The results comfirm that 1000℃ annealed sample consists of crystalline Zn2SiO4:Mn shells and amorphous SiO2 cores.The phosphor show the green emission of Mn2+ at 521nm corresponding 4T1(4G)-6A1(6S) transition,and the possible luminescence mechanism is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of silica-supported 12-silicotungstic acid catalysts (H4SiW12O40, abbreviated as HSiW), modified with various loadings of Teflon (HSiW/SiO2-Teflon), were prepared by an impregnation method. The surface properties of the catalysts were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), BET, infrared (IR) spectroscopy, NH3-TPD and the Drop Shape Analysis (DSA). SEM results combined with energy-dispersive X-ray (EDX) measurements of HSiW/SiO2-Teflon revealed that F-compound (Teflon) is effectively coated on the catalyst surface. The contact angles for water and oil of 50 wt% HSiW/SiO2 and HSiW/SiO2-Teflon indicate that HSiW/SiO2-Teflon catalyst enhances not only the surface hydrophobicity but also the surface lipophobicity by means of the addition of Teflon. Silica-supported 12-silicotungstic acid modified with Teflon exhibits higher C-8(=) selectivity and longer lifetime than that of silica-supported 12-silicotungstic acid in isobutene oligomerization. Thus, surface-appropriate lipophobicity of catalysts may be effective for decreasing the interaction between coke precursors and the catalyst surface and for removing deposited coke more easily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sol-gel technique was used to prepare Gd2Ti2O7:Eu3+-coated submicron silica spheres (SiO2@Gd2Ti2O7:Eu3+). The resulted SiO2@Gd2Ti2O7:Eu3+ core-shell particles were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, as well as kinetic decays. The XRD results demonstrate that the Gd2Ti2O7:Eu3+ layers begin to crystallize on the SiO2 spheres after annealing at 800 degrees C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size similar to 620 nm), non-agglomeration, and smooth surface. The thickness of the Gd2Ti2O7:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (60 nm for four deposition cycles). Under the irradiation of 310 nm ultraviolet, the SiO2@GdTi2O7:Eu3+ samples show strong emission of Eu3+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SiO2@Gd2MoO6:EU3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy ITEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Gd2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrate that the Gd2MoO6:Eu3+ layers on the SiO2 spheres begin to crystallize after annealing at 600 degrees C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 600 nm), are not agglomerated, and have a smooth surface. The thickness of the Gd2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). The Eu3+ shows a strong PL luminescence (dominated by D-5(0)-F-7(2) red emission at 613 nm) under the excitation of 307 nm UV light.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by D-5(0)-F-7(2) transition of Eu3+ (618 nm, red).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gd(OH)(3) nanobundles, which consisted of bundle-like nanorods, have been prepared through a simple and facile hydrothermal method. The crystal, purity, morphology and structural features of Gd(OH)(3) nanobundles are investigated by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy dispersive X-ray (EDX). A possible formation mechanism of Gd(OH)(3) nanobundles is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New series of oxides, La3MMo2O12 (M = In, Ga and Al), have been prepared by the solid-state reaction. The composition and elemental distribution were analyzed by the energy-dispersive X-ray (EDX) analysis. As determined by the X-ray diffraction (XRD), these compounds have similar crystal structures that can be indexed on a monoclinic cell at room temperature. AC impedance spectra and the DC electrical conductivity measurements in various atmospheres indicate that they are oxide ion conductors with ionic conductivities between 10(-2) and 10(-3) S/cm at 800 degrees C. The conductivity decreases in the order of La3GaMo2O12 > La3AlMo2O12 > La3InMo2O12, implying that the effect of cell volume and polarization associated with In3+, Ga3+ and Al3+ play an important role in the anion transport of these materials. The reversible phase transition was observed in all these compounds as confirmed by the differential thermal analysis (DTA) and dilatometric measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a novel substitutional solid solution (W0.8Al0.2)C was synthesized by mechanically activated high-temperature reaction. X-ray diffraction was used for phase identification during the whole reaction process. Environment scanning electronic microscopy-field emission gun and energy dispersive x-ray were used to investigate the microstructure and the quantitative material composition of the specimen. (W(0.8)A(10.2))C was found to crystallize in the WC-type, and the cell parameters were a = 2.907(1) angstrom and c = 2.837(1) angstrom. The hardness of (W0.8Al0.2)C was tested to be 19.3 +/- 1 GPa, and the density was 13.19 +/- 0.05 g cm(-3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective crystallization of BaF2 crystals under a compressed Langmuir monolayer of behenic acid [CH3(CH2)(20)COOH] has been studied by using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analysis. It was found that, in the absence of a monolayer, three kinds of crystals (Ba2ClF3, BaClF, and BaF2) can be obtained by mixing BaCl2 with a NH4F solution. However, in the presence of the monolayer of behenic acid, only BaF2 crystals appear at the monolayer-subphase interface and crystals have a special crystal face (100). During this process of crystallization, the monolayer plays a very important role and acts as a template that can preferentially select a special crystal and a special crystal face. The above results can be explained in terms of a specific molecular interaction between ions and the headgroups of the monolayer and specific electrostatic, geometric, and stereochemical interactions at the organic-inorganic interface.