95 resultados para Electroweak symmetry breaking.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within an isospin- and momentum-dependent hadronic transport model, it is shown that the recent FOPI data on the pi(-)/pi(+) ratio in central heavy-ion collisions at SIS/GSI energies [Willy Reisdorf , Nucl. Phys. A 781, 459 (2007)] provide circumstantial evidence suggesting a rather soft nuclear symmetry energy E-sym(rho) at rho >= 2 rho(0) compared to the Akmal-Pandharipande-Ravenhall prediction. Some astrophysical implications and the need for further experimental confirmations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a transport model coupled with a phase-space coalescence afterburner, we study the triton-He-3 (t-He-3) ratio with both relative and differential transverse flows in semicentral Sn-132 + Sn-124 reactions at a beam energy of 400 MeV/nucleon. The neutron-proton ratios with relative and differential flows are also discussed as a reference. We find that similar to the neutron-proton pairs, the t-He-3 pairs also carry interesting information regarding the density dependence of the nuclear symmetry energy. Moreover, the nuclear symmetry energy affects more strongly the t-He-3 relative and differential flows than the pi(-)/pi(+) ratio in the same reaction. The t-He-3 relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by recent experimental observation of spin-orbit coupling in carbon nanotube quantum dots [F. Kuemmeth , Nature (London) 452, 448 (2008)], we investigate in detail its influence on the Kondo effect. The spin-orbit coupling intrinsically lifts out the fourfold degeneracy of a single electron in the dot, thereby breaking the SU(4) symmetry and splitting the Kondo resonance even at zero magnetic field. When the field is applied, the Kondo resonance further splits and exhibits fine multipeak structures resulting from the interplay of spin-orbit coupling and the Zeeman effect. A microscopic cotunneling process for each peak can be uniquely identified. Finally, a purely orbital Kondo effect in the two-electron regime is also predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the relationship between the properties of the isovector giant dipole resonance of finite nuclei and the symmetry energy in the framework of the relativistic mean field theory with six different parameter sets of nonlinear effective Lagrangian. A strong linear correlation of excited energies of the dipole resonance in finite nuclei and symmetry energy at and below the saturation density is found. This linear correlation leads to the symmetry energy at the saturation density at the interval 33.0MeV <= S(po) <= 37.0 MeV. The comparison to the present experimental data in the soft dipole mode of (132) Sn constrains approximately the symmetry energy at p = 0.1 fm(-3) at the interval 21.2MeV similar to 22.5 MeV. It is proposed that a precise measurement of the soft dipole mode in neutron rich nuclei could set up an important constraint on the equation of state for asymmetric nuclear matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn -> pn gamma. Very interestingly, nevertheless, the ratio of hard photon spectra R-1/2(gamma) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of Sn-132 + Sn-124 and Sn-112 + Sn-112 at E-beam/A = 50 MeV, for example, the R-1/2(gamma) displays a rise up to 15% when the symmetry energy is reduced by about 20% at rho = 1.3 rho(0) which is the maximum density reached in these reactions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the effect of slow phase relaxation and the spin off-diagonal S-matrix correlations on the cross-section energy oscillations and the time evolution of the highly excited intermediate systems formed in complex collisions. Such deformed intermediate complexes with strongly overlapping resonances can be formed in heavy-ion collisions, bimolecular chemical reactions, and atomic cluster collisions. The effects of quasiperiodic energy dependence of the cross sections, coherent rotation of the hyperdeformed similar or equal to(3 : 1) intermediate complex, Schrodinger cat states, and quantum-classical transition are studied for Mg-24 + Si-28 heavy-ion scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent transport model IBUU04, the transverse momentum distributions of the free neutron-proton ratio in the Sn-132+(124) Sn reaction system at mid-central collisions with beam energies of 400/A MeV, 600/A MeV and 800/A MeV are studied by using two different symmetry energies. It is found that the free neutron-proton ratio as a function of the transverse momentum at the mid-rapidity is very sensitive to the density dependency of the symmetry energy especially at incident energies around 400/AMeV.