93 resultados para Electronic absorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for resonance absorption during the oblique incidence by femtosecond laser pulses on a small-scale-length density plasma [k(0)L is an element of(0.1,10)] is proposed. The physics of resonance absorption is analyzed more clearly as we separate the electric field into an electromagnetic part and an electrostatic part. It is found that the characteristics of the physical quantities (fractional absorption, optimum angle, etc.) in a small-scale-length plasma are quite different from the predictions of classical theory. Absorption processes are generally dependent on the density scale length. For shorter scale length or higher laser intensity, vacuum heating tends to be dominant. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking. This can lead to heating of the plasma at the expanse of the wave energy. It is found that the optimum angle is independent of the laser intensity while the absorption rate increases with the laser intensity, and the absorption rate can reach as high as 25%. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for JxB heating during the normal incidence by a short ultraintense linearly polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the JxB heating includes two distinct coupling processes depending on the initial laser and plasma conditions: for a moderate intensity (a <= 1), the ponderomotive force of the laser light can drive a large plasma wave at the point n(e)=4 gamma(0)n(c) resonantly. When this plasma wave is damped, the energy is transferred to the plasma. At higher intensity, the electron density is steepened to a high level by the time-independent ponderomotive force, n(e)> 4 gamma(0)n(c), so that no 2 omega resonance will occur, but the longitudinal component of the oscillating ponderomotive field can lead to an absorption mechanism similar to "vacuum heating." (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage in fused silica and CaF2 crystals induced by wavelength tunable femtosecond lasers is studied. The threshold fluence is observed to increase rapidly with laser wavelength lambda in the region of 250-800 nm, while it is nearly a constant for 800 electronic excitation is also studied by a pump and probe method. The reflectivity increases rapidly in the latter half of pump pulse, which supports that impact ionization plays an important role in the generation of conduction band electrons (CBEs). We study the CBEs absorption via subconduction-band (sub-CB) transition, and develop a coupled avalanche model. Our results indicate that the CBEs absorption via sub-CB transition plays an important role in the damage in dielectrics irradiated by the visible and near ultraviolet femtosecond lasers. Our theory explains well the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The giant enhancement of Kerr nonlinearity in a four-level tripod type system is investigated theoretically. By tuning the value of the Rabi frequency of the coherent control field, owing to the double dark resonances, the giant-enhanced Kerr nonlinearity can be achieved within the right transparency window. The in fluence of Doppler broadening is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the saturated diffraction efficiency has been optimized by considering the effect of the absorption of the recording light on a crossed-beam grating with 90 degrees recording geometry in Fe:LiNbO3 crystals. The dependence of saturated diffraction efficiency on the doping levels with a known oxidation-reduction state, as well as the dependence of saturated diffraction efficiency on oxidation-reduction state with known doping levels, has been investigated. Two competing effects on the saturated diffraction efficiency were discussed, and the intensity profile of the diffracted beam at the output boundary has also been investigated. The results show that the maximal saturated diffraction efficiency can be obtained in crystals with moderate doping levels and modest oxidation state. An experimental verification is performed and the results are consistent with those of the theoretical calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absorption characteristic of lithium niobate crystals doped with chromium and copper (Cr and Cu) is investigated. We find that there are two apparent absorption bands for LiNbO3:Cr:Cu crystal doped with 0.14 wt.% Cr2O3 and 0.011 wt.% CuO; one is around 480 nm, and the other is around 660 nm. With a decrease in the doping composition of Cr and an increase in the doping composition of Cu, no apparent absorption band in the shorter wavelength range exists. The higher the doping level of Cr, the larger the absorbance around 660 nm. Although a 633 nm red light is located in the absorption band around 660 nm, the absorption at 633 nm does not help the photorefractive process; i.e., unlike other doubly doped crystals, for example, LiNbO3:Fe:Mn crystal, a nonvolatile holographic recording can be realized by a 633 nm red light as the recording light and a 390 nm UV light as the sensitizing light. For LiNbO3:Cr:Cu crystals, by changing the recording light from a 633 nm red light to a 514 nm green light, sensitizing with a 390 nm UV light and a 488 nm blue light, respectively, a nonvolatile holographic recording can be realized. Doping the appropriate Cr (for example, N-Cr = 2.795 X 10(25)m(-3) and N-Cr/N-Cu = 1) benefits the improvement of holographic recording properties. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have investigated the grating erasure of a reduced LiNbO3:Fe crystal with different erasing wavelengths. The overall hologram evolution in the process of grating erasure is nonexponential due to strong absorption which is contrary to the mono-exponential law. The hologram in the rear part of the crystal can persist for a long time in the grating erasure due to weak erasing light intensity by strong absorption, which can enlarge the erasure time constant. From the erasure experiments, the global absorption ad 5 can be taken as the optimum absorption to acquire a good trade-off between the sensitivity and hologram strength in the crystal. (c) 2006 Elsevier GmbH. All rights reserved.